Warning: mkdir(): Permission denied in /home/virtual/lib/view_data.php on line 81

Warning: fopen(upload/ip_log/ip_log_2024-07.txt): failed to open stream: No such file or directory in /home/virtual/lib/view_data.php on line 83

Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84
Tangpukdee, Duangdee, Wilairatana, and Krudsood: Malaria Diagnosis: A Brief Review
Cited By
Citations to this article as recorded by
Assessment of Expert-Level Automated Detection of Plasmodium falciparum in Digitized Thin Blood Smear Images
Po-Chen Kuo, Hao-Yuan Cheng, Pi-Fang Chen, Yu-Lun Liu, Martin Kang, Min-Chu Kuo, Shih-Fen Hsu, Hsin-Jung Lu, Stefan Hong, Chan-Hung Su, Ding-Ping Liu, Yi-Chin Tu, Jen-Hsiang Chuang
JAMA Network Open.2020; 3(2): e200206.     CrossRef
A Lab‐On‐chip Tool for Rapid, Quantitative, and Stage‐selective Diagnosis of Malaria
Marco Giacometti, Francesca Milesi, Pietro Lorenzo Coppadoro, Alberto Rizzo, Federico Fagiani, Christian Rinaldi, Matteo Cantoni, Daniela Petti, Edoardo Albisetti, Marco Sampietro, Mariagrazia Ciardo, Giulia Siciliano, Pietro Alano, Brigitte Lemen, Joel B
Advanced Science.2021;[Epub]     CrossRef
Diagnosis of Malaria Parasites Plasmodium spp. in Endemic Areas: Current Strategies for an Ancient Disease
Brian Gitta, Nicole Kilian
BioEssays.2020;[Epub]     CrossRef
Design, synthesis and biological evaluation of several aromatic substituted chalcones as antimalarial agents
Adarsh Gopinathan, Mahreen Moidu, Minil Mukundan, Siju Ellickal Narayanan, Hariraj Narayanan, Navin Adhikari
Drug Development Research.2020; 81(8): 1048.     CrossRef
A Simple, Efficient and Ultrasensitive Gold Nanourchin Based Electrochemical Sensor for the Determination of an Antimalarial Drug: Mefloquine
Tirivashe Elton Chiwunze, Neeta Bachheti Thapliyal, Venkata Narayana Palakollu, Rajshekhar Karpoormath
Electroanalysis.2017; 29(9): 2138.     CrossRef
Reflections on the surge in malaria cases after unprecedented flooding in Pakistan—A commentary
Shehroze Tabassum, Tuaseen Kalsoom, Zaofashan Zaheer, Aroma Naeem, Ahmed Afifi, Laya Ohadi
Health Science Reports.2023;[Epub]     CrossRef
A high‐performance cell‐phone based polarized microscope for malaria diagnosis
Zhenfang Yu, Yunfei Li, Lin Deng, Bing Luo, Pinghui Wu, Dongxian Geng
Journal of Biophotonics.2023;[Epub]     CrossRef
Malaria diagnostic update: From conventional to advanced method
Loeki Enggar Fitri, Tarina Widaningrum, Agustina Tri Endharti, Muhammad Hatta Prabowo, Nuning Winaris, Rivo Yudhinata Brian Nugraha
Journal of Clinical Laboratory Analysis.2022;[Epub]     CrossRef
Microscopic malaria parasitemia diagnosis and grading on benchmark datasets
Amjad Rehman, Naveed Abbas, Tanzila Saba, Zahid Mehmood, Toqeer Mahmood, Khawaja Tehseen Ahmed
Microscopy Research and Technique.2018; 81(9): 1042.     CrossRef
Extrinsic parameter's adjustment and potential implications in Plasmodium falciparum malaria diagnosis
Vijayalakshmi A, Rajesh Kanna B, Vijayalakshmi C
Microscopy Research and Technique.2022; 85(2): 685.     CrossRef
Differential expression of serum/plasma proteins in various infectious diseases: Specific or nonspecific signatures
Sandipan Ray, Sandip K. Patel, Vipin Kumar, Jagruti Damahe, Sanjeeva Srivastava
PROTEOMICS – Clinical Applications.2014; 8(1-2): 53.     CrossRef
Malaria in India: The Need for New Targets for Diagnosis and Detection of Plasmodium vivax
Swati Patankar, Shobhona Sharma, Pradipsinh K. Rathod, Manoj T. Duraisingh
PROTEOMICS – Clinical Applications.2018;[Epub]     CrossRef
Identification of Highly Expressed Plasmodium Vivax Proteins from Clinical Isolates Using Proteomics
Apoorva Venkatesh, Anwesha Lahiri, Panga Jaipal Reddy, Jayanthi Shastri, Sheetal Bankar, Swati Patankar, Sanjeeva Srivastava
PROTEOMICS – Clinical Applications.2018;[Epub]     CrossRef
Severe malaria. Current concepts and practical overview: What every intensivist should know
Mervyn Mer, Martin W. Dünser, Regina Giera, Arjen M. Dondorp
Intensive Care Medicine.2020; 46(5): 907.     CrossRef
Utility of nested polymerase chain reaction over the microscopy and immuno-chromatographic test in the detection of Plasmodium species and their clinical spectrum
P. Ranjan, U. Ghoshal
Parasitology Research.2016; 115(9): 3375.     CrossRef
Plasmodium genomics: an approach for learning about and ending human malaria
José Antonio Garrido-Cardenas, Lilia González-Cerón, Francisco Manzano-Agugliaro, Concepción Mesa-Valle
Parasitology Research.2019; 118(1): 1.     CrossRef
Malaria diagnostic methods with the elimination goal in view
Olukunle O. Oyegoke, Leah Maharaj, Oluwasegun P. Akoniyon, Illiya Kwoji, Alexandra T. Roux, Taiye S. Adewumi, Rajendra Maharaj, Bolanle T. Oyebola, Matthew A. Adeleke, Moses Okpeku
Parasitology Research.2022; 121(7): 1867.     CrossRef
A generalized deep learning-based framework for assistance to the human malaria diagnosis from microscopic images
Ziheng Yang, Halim Benhabiles, Karim Hammoudi, Feryal Windal, Ruiwen He, Dominique Collard
Neural Computing and Applications.2022; 34(17): 14223.     CrossRef
A microfluidic device for capturing malaria-infected red blood cells by magnetophoretic force using an array of V- and W-shaped nickel microstructures
Pachara Noosawat, Werayut Srituravanich, Nattapol Damrongplasit, Yuji Suzuki, Morakot Kaewthamasorn, Alongkorn Pimpin
Microfluidics and Nanofluidics.2022;[Epub]     CrossRef
Design and analysis of a single elliptical channel photonic crystal fiber sensor for potential malaria detection
Araf Shafkat, Ahmed Nabih Zaki Rashed, Hazem M. El-Hageen, Aadel M. Alatwi
Journal of Sol-Gel Science and Technology.2021; 98(1): 202.     CrossRef
Highly Sensitive SPR Biosensor for Malaria Detection Employing ZnO, Fe2O3, and Black Phosphorous
Nikhil Pratap Singh, Adarsh Chandra Mishra, Sapana Yadav, Pooja Lohia, D. K. Dwivedi, M. Khalid Hossain
Plasmonics.2024;[Epub]     CrossRef
Assessment of Microscopic Detection of Malaria with Nested Polymerase Chain Reaction in War-Torn Federally Administered Tribal Areas of Pakistan
Muhammad Faisal Nadeem, Aamer Ali Khattak, Nadia Zeeshan, Usman Ayub Awan, Adnan Yaqoob
Acta Parasitologica.2021; 66(4): 1186.     CrossRef
Gold, MXene, and graphene nanofilm-based surface plasmon resonance sensor for malaria detection
Bhishma Karki, Amrindra Pal, Partha Sarkar, Arun Uniyal, Ram Bharos Yadav
Journal of Optics.2024;[Epub]     CrossRef
Comparision of the various routine diagnostic modalities of malaria and a new method: the Parasight™ platform
Sindhusuta Das, Nonika Rajkumari, U. Revathi, Anusha Gururajan
Journal of Parasitic Diseases.2020; 44(3): 528.     CrossRef
Genotyping of ABO and Duffy blood groups among malaria patients in Thailand
Phattharaphon Hongfongfa, Jiraporn Kuesap
Journal of Parasitic Diseases.2022; 46(1): 178.     CrossRef
Synthesis and characterization of WO3-doped polyaniline to sense biomarker VOCs of Malaria
P. Jisha, M. S. Suma, M. V. Murugendrappa
Applied Nanoscience.2021; 11(1): 29.     CrossRef
Selecting better diagnostic kits for diagnosis of malarial parasites at point of care
Prudhvi Chand Mallepaddi, Soumendra Nath Maity, Revathi Poonati, Nagababu Pyadala, Rathnagiri Polavarapu, Usha Kiranmayi Mangamuri, Sudhakar Poda
3 Biotech.2019;[Epub]     CrossRef
Differential diagnosis of Plasmodium falciparum and Plasmodium vivax in mixed infection by colorimetric nanogold probes
Nantawan Wangmaung, Sirinart Chomean, Wanida Ittarat
Analytical Biochemistry.2021; 624: 114173.     CrossRef
Recent progress in electrochemical sensors for detection and quantification of malaria
Zondi Nate, Atal A.S. Gill, Ruchika Chauhan, Rajshekhar Karpoormath
Analytical Biochemistry.2022; 643: 114592.     CrossRef
Molecular surveillance of pfhrp2 and pfhrp3 genes deletion in Plasmodium falciparum isolates and the implications for rapid diagnostic tests in Nigeria
Roland Funwei, David Nderu, Christian N. Nguetse, Bolaji N. Thomas, Catherine O. Falade, Thirumalaisamy P Velavan, Olusola Ojurongbe
Acta Tropica.2019; 196: 121.     CrossRef
Mathematical modeling and simulation for malaria disease transmission using the CF fractional derivative
A.S. Alqahtani, Sehrish Ramzan, Syeda Alishwa Zanib, Aqsa Nazir, Khalid Masood, M.Y. Malik
Alexandria Engineering Journal.2024; 101: 193.     CrossRef
Clinical review of malaria for the emergency physician
Laura Janneck, Alex Koyfman, James Kimo Takayesu
African Journal of Emergency Medicine.2011; 1(3): 126.     CrossRef
State of diagnosing infectious pathogens using colloidal nanomaterials
Jisung Kim, Mohamed A. Abdou Mohamed, Kyryl Zagorovsky, Warren C.W. Chan
Biomaterials.2017; 146: 97.     CrossRef
Recent advances in the synthesis and antimalarial activity of 1,2,4-trioxanes
Komal Rathi, Monika Shukla, Mohammad Hassam, Rahul Shrivastava, Varun Rawat, Ved Prakash Verma
Bioorganic Chemistry.2024; 143: 107043.     CrossRef
Two-stage sample-to-answer system based on nucleic acid amplification approach for detection of malaria parasites
Qing Liu, Jeonghun Nam, Sangho Kim, Chwee Teck Lim, Mi Kyoung Park, Yong Shin
Biosensors and Bioelectronics.2016; 82: 1.     CrossRef
Capacitive malaria aptasensor using Plasmodium falciparum glutamate dehydrogenase as target antigen in undiluted human serum
Naveen K. Singh, Sunil K. Arya, Pedro Estrela, Pranab Goswami
Biosensors and Bioelectronics.2018; 117: 246.     CrossRef
Development of an aptamer-based field effect transistor biosensor for quantitative detection of Plasmodium falciparum glutamate dehydrogenase in serum samples
Naveen K. Singh, Phurpa Dema Thungon, Pedro Estrela, Pranab Goswami
Biosensors and Bioelectronics.2019; 123: 30.     CrossRef
Semi-supervised graph learning framework for apicomplexan parasite classification
Yan Ha, Xiangjie Meng, Zeyu Du, Junfeng Tian, Yu Yuan
Biomedical Signal Processing and Control.2023; 81: 104502.     CrossRef
Breath biomarkers in Non-Carcinogenic diseases
Pedro Catalão Moura, Maria Raposo, Valentina Vassilenko
Clinica Chimica Acta.2024; 552: 117692.     CrossRef
Oxidation of chloroquine drug by ferrate: Kinetics, reaction mechanism and antibacterial activity
Feilong Dong, Jinzhe Li, Qiufeng Lin, Da Wang, Cong Li, Yi Shen, Tao Zeng, Shuang Song
Chemical Engineering Journal.2022; 428: 131408.     CrossRef
Rapid diagnosis of parasitic diseases: current scenario and future needs
S. Momčilović, C. Cantacessi, V. Arsić-Arsenijević, D. Otranto, S. Tasić-Otašević
Clinical Microbiology and Infection.2019; 25(3): 290.     CrossRef
Digital PCR: a new technology for diagnosis of parasitic infections
E. Pomari, C. Piubelli, F. Perandin, Z. Bisoffi
Clinical Microbiology and Infection.2019; 25(12): 1510.     CrossRef
Current methods for the detection of Plasmodium parasite species infecting humans
Lucinda Slater, Shoaib Ashraf, Osama Zahid, Qasim Ali, Muhammad Oneeb, Muhammad Haroon Akbar, Muhammad Ilyas Riaz, Kiran Afshan, Neil Sargison, Umer Chaudhry
Current Research in Parasitology & Vector-Borne Diseases.2022; 2: 100086.     CrossRef
Deep learning for microscopic examination of protozoan parasites
Chi Zhang, Hao Jiang, Hanlin Jiang, Hui Xi, Baodong Chen, Yubing Liu, Mario Juhas, Junyi Li, Yang Zhang
Computational and Structural Biotechnology Journal.2022; 20: 1036.     CrossRef
Deep convolution neural network for image recognition
Boukaye Boubacar Traore, Bernard Kamsu-Foguem, Fana Tangara
Ecological Informatics.2018; 48: 257.     CrossRef
The design, synthesis and antiplasmodial evaluation of novel sulfoximine-isoxazole hybrids as potential antimalarial agents
Jackie L. Mabasa, Tommy F. Mabasa, Musawenkosi L. Nyathi, Paseka T. Moshapo
European Journal of Medicinal Chemistry Reports.2024; 10: 100128.     CrossRef
Machine and deep learning methods in identifying malaria through microscopic blood smear: A systematic review
Dhevisha Sukumarran, Khairunnisa Hasikin, Anis Salwa Mohd Khairuddin, Romano Ngui, Wan Yusoff Wan Sulaiman, Indra Vythilingam, Paul C.S. Divis
Engineering Applications of Artificial Intelligence.2024; 133: 108529.     CrossRef
Digital image analysis for automatic enumeration of malaria parasites using morphological operations
J.E. Arco, J.M. Górriz, J. Ramírez, I. Álvarez, C.G. Puntonet
Expert Systems with Applications.2015; 42(6): 3041.     CrossRef
SPECT/CT analysis of splenic function in genistein-treated malaria-infected mice
Young Ran Ha, Sung-A. Kang, Jeongeun Ryu, Eunseop Yeom, Mun Ki Kim, Sang Joon Lee
Experimental Parasitology.2016; 170: 10.     CrossRef
Performance assessment of a widely used rapid diagnostic test CareStart™ compared to microscopy for the detection of Plasmodium in asymptomatic patients in the Western region of Cameroon
Roland Bamou, Zidedine Nematchoua-Weyou, Michel Lontsi-Demano, Laura Gilberine Ningahi, Melanie Adèle Tchoumbou, Blaise Armand Defo-Talom, Marie Paul Audrey Mayi, Timoléon Tchuinkam
Heliyon.2021; 7(2): e06271.     CrossRef
Quantitation of Malarial parasitemia in Giemsa stained thin blood smears using Six Sigma threshold as preprocessor
Srinivasan Sankaran, Muthukumaran Malarvel, Gopalakrishnan Sethumadhavan, Dinkar Sahal
Optik.2017; 145: 225.     CrossRef
Differences in infection patterns of vector-borne blood-stage parasites of sympatric Malagasy primate species (Microcebus murinus, M. ravelobensis)
Annette Klein, Christina Strube, Ute Radespiel, Andrea Springer, Elke Zimmermann
International Journal for Parasitology: Parasites and Wildlife.2019; 10: 59.     CrossRef
Malaria and the Heart
Shyla Gupta, Naomi Gazendam, Juan María Farina, Clara Saldarriaga, Ivan Mendoza, Ricardo López-Santi, Gonzalo Emanuel Pérez, Manuel Martínez-Sellés, Adrian Baranchuk
Journal of the American College of Cardiology.2021; 77(8): 1110.     CrossRef
Computational study of a magnetic design to improve the diagnosis of malaria: 2D model
Siddharth Vyas, Vladimir Genis, Gary Friedman
Journal of Magnetism and Magnetic Materials.2017; 423: 301.     CrossRef
Development of Cooperative Primer-Based Real-Time PCR Assays for the Detection of Plasmodium malariae and Plasmodium ovale
Felix Ansah, Jonathan Suurbaar, Derrick Darko, Nsoh G. Anabire, Samuel O. Blankson, Bright K.S. Domson, Alamissa Soulama, Paulina Kpasra, Jersley D. Chirawurah, Lucas Amenga-Etego, Prosper Kanyong, Gordon A. Awandare, Yaw Aniweh
The Journal of Molecular Diagnostics.2021; 23(10): 1393.     CrossRef
Diagnosis and management of malaria in the intensive care unit
George Akafity, Nicholas Kumi, Joyce Ashong
Journal of Intensive Medicine.2024; 4(1): 3.     CrossRef
A polarization independent highly sensitive metasurface-based biosensor for lab-on-chip applications
Rummanur Rahad, Mohammad Ashraful Haque, Mahin Khan Mahadi, Md. Omar Faruque, Sheikh Mohd. Ta-Seen Afrid, Abu S.M. Mohsin, Abdullah Md Nazim Uddin Rahman Niaz, Rakibul Hasan Sagor
Measurement.2024; 231: 114652.     CrossRef
Diagnostic tools for tackling febrile illness and enhancing patient management
Konstantinos Mitsakakis, Valérie D'Acremont, Sebastian Hin, Felix von Stetten, Roland Zengerle
Microelectronic Engineering.2018; 201: 26.     CrossRef
Machine learning approach for automated screening of malaria parasite using light microscopic images
Dev Kumar Das, Madhumala Ghosh, Mallika Pal, Asok K. Maiti, Chandan Chakraborty
Micron.2013; 45: 97.     CrossRef
Application of loop-mediated isothermal amplification assay combined with lateral flow dipstick for detection of Plasmodium falciparum and Plasmodium vivax
Suganya Yongkiettrakul, Wansadaj Jaroenram, Narong Arunrut, Wanwisa Chareanchim, Supicha Pannengpetch, Rungkarn Suebsing, Wansika Kiatpathomchai, Wichai Pornthanakasem, Yongyuth Yuthavong, Darin Kongkasuriyachai
Parasitology International.2014; 63(6): 777.     CrossRef
Application of machine and deep learning algorithms in optical microscopic detection of Plasmodium: A malaria diagnostic tool for the future
Charles Ikerionwu, Chikodili Ugwuishiwu, Izunna Okpala, Idara James, Matthew Okoronkwo, Charles Nnadi, Ugochukwu Orji, Deborah Ebem, Anthony Ike
Photodiagnosis and Photodynamic Therapy.2022; 40: 103198.     CrossRef
Cloning, overexpression, purification and characterization of Plasmodium knowlesi lactate dehydrogenase
Vandana Singh, Deep C. Kaushal, Sushma Rathaur, Niraj Kumar, Nuzhat A. Kaushal
Protein Expression and Purification.2012; 84(2): 195.     CrossRef
Can malaria parasites be spontaneously cleared?
Merryn S. Roe, Katherine O’Flaherty, Freya J.I. Fowkes
Trends in Parasitology.2022; 38(5): 356.     CrossRef
Current developments on the antimalarial, antileishmanial, and antitrypanosomal potential and mechanisms of action of Terminalia spp.
Mariscal Brice Tchatat Tali, Boniface Pone Kamdem, Jean Claude Tchouankeu, Fabrice Fekam Boyom
South African Journal of Botany.2023; 156: 309.     CrossRef
A portable, optical scanning microsystem for large field of view, high resolution imaging of biological specimens
Georgia Korompili, Georgios Kanakaris, Christos Ampatis, Nikos Chronis
Sensors and Actuators A: Physical.2018; 279: 367.     CrossRef
Small angle light scattering assay for the detection of malaria infection
R.A. Inocêncio da Luz, H.M. Mavoko, I. Crandall, S. Deshpande, P. Lutumba, J.P. Van geertruyden
Talanta.2016; 147: 473.     CrossRef
Image analysis and machine learning for detecting malaria
Mahdieh Poostchi, Kamolrat Silamut, Richard J. Maude, Stefan Jaeger, George Thoma
Translational Research.2018; 194: 36.     CrossRef
Passive gravitational sedimentation of peripheral blood increases the sensitivity of microscopic detection of malaria
Richard Davis, Trenden Flanigan, Eric Wilson
Asian Pacific Journal of Tropical Medicine.2013; 6(7): 552.     CrossRef
Analysis of malaria clinical−epidemiological predictors in individuals from Brazilian Amazon
Paulo Guilherme Souza Lisbôa, Janaina Maria Rodrigues Medeiros, Arthur Vinícius de Souza, Bruno Fernando Barros dos Santos, Henrique Otávio Coutinho Sanches, Juliane Lúcia Gomes da Rocha, Wender de Jesus Pena Correa Junior, Gabriela Góes Costa, Tania do S
Parasitology.2022; 149(1): 10.     CrossRef
ABO blood group and risk of malaria during pregnancy: a systematic review and meta-analysis
Ling Ai, Jingyuan Li, Wenjun Wang, Yuying Li
Epidemiology and Infection.2022;[Epub]     CrossRef
Automated detection and staging of malaria parasites from cytological smears using convolutional neural networks
Mira S. Davidson, Clare Andradi-Brown, Sabrina Yahiya, Jill Chmielewski, Aidan J. O’Donnell, Pratima Gurung, Myriam D. Jeninga, Parichat Prommana, Dean W. Andrew, Michaela Petter, Chairat Uthaipibull, Michelle J. Boyle, George W. Ashdown, Jeffrey D. Dvori
Biological Imaging.2021;[Epub]     CrossRef
Detection and Quantification of Early-Stage Malaria Parasites in Laboratory Infected Erythrocytes by Attenuated Total Reflectance Infrared Spectroscopy and Multivariate Analysis
Aazam Khoshmanesh, Matthew W. A. Dixon, Shannon Kenny, Leann Tilley, Don McNaughton, Bayden R. Wood
Analytical Chemistry.2014; 86(9): 4379.     CrossRef
A Near-Infrared “Matchbox Size” Spectrometer to Detect and Quantify Malaria Parasitemia
John A. Adegoke, Kamila Kochan, Philip Heraud, Bayden R. Wood
Analytical Chemistry.2021; 93(13): 5451.     CrossRef
Ultraviolet/Visible and Near-Infrared Dual Spectroscopic Method for Detection and Quantification of Low-Level Malaria Parasitemia in Whole Blood
John A. Adegoke, Amanda De Paoli, Isaac O. Afara, Kamila Kochan, Darren J. Creek, Philip Heraud, Bayden R. Wood
Analytical Chemistry.2021; 93(39): 13302.     CrossRef
Paper Microfluidics for Point-of-Care Blood-Based Analysis and Diagnostics
Hua Li, Andrew J. Steckl
Analytical Chemistry.2019; 91(1): 352.     CrossRef
Continuous-Flow Separation of Malaria-Infected Human Erythrocytes Using DC Dielectrophoresis: An Electrokinetic Modeling and Simulation
Milad Nahavandi
Industrial & Engineering Chemistry Research.2016; 55(19): 5484.     CrossRef
The Future in Sensing Technologies for Malaria Surveillance: A Review of Hemozoin-Based Diagnosis
Vitória Baptista, Mariana S. Costa, Carla Calçada, Miguel Silva, José Pedro Gil, Maria Isabel Veiga, Susana O. Catarino
ACS Sensors.2021; 6(11): 3898.     CrossRef
Enhancing the sensitivity of micro magnetic resonance relaxometry detection of low parasitemia Plasmodium falciparum in human blood
Smitha Surendran Thamarath, Aoli Xiong, Po-Han Lin, Peter Rainer Preiser, Jongyoon Han
Scientific Reports.2019;[Epub]     CrossRef
Enhancing malaria diagnosis through microfluidic cell enrichment and magnetic resonance relaxometry detection
Tian Fook Kong, Weijian Ye, Weng Kung Peng, Han Wei Hou, Marcos, Peter Rainer Preiser, Nam-Trung Nguyen, Jongyoon Han
Scientific Reports.2015;[Epub]     CrossRef
Hemoglobin consumption by P. falciparum in individual erythrocytes imaged via quantitative phase spectroscopy
Matthew T. Rinehart, Han Sang Park, Katelyn A. Walzer, Jen-Tsan Ashley Chi, Adam Wax
Scientific Reports.2016;[Epub]     CrossRef
Simple sample processing enhances malaria rapid diagnostic test performance
K. M. Davis, L. E. Gibson, F. R. Haselton, D. W. Wright
The Analyst.2014; 139(12): 3026.     CrossRef
Diagnosing malaria infected cells at the single cell level using focal plane array Fourier transform infrared imaging spectroscopy
Bayden R. Wood, Keith. R. Bambery, Matthew W. A. Dixon, Leann Tilley, Michael J. Nasse, Eric Mattson, Carol J. Hirschmugl
The Analyst.2014; 139(19): 4769.     CrossRef
Malaria detection using inertial microfluidics
Majid Ebrahimi Warkiani, Andy Kah Ping Tay, Bee Luan Khoo, Xu Xiaofeng, Jongyoon Han, Chwee Teck Lim
Lab on a Chip.2015; 15(4): 1101.     CrossRef
High resolution FTIR imaging provides automated discrimination and detection of single malaria parasite infected erythrocytes on glass
David Perez-Guaita, Dean Andrew, Philip Heraud, James Beeson, David Anderson, Jack Richards, Bayden R. Wood
Faraday Discussions.2016; 187: 341.     CrossRef
Deformability based sorting of red blood cells improves diagnostic sensitivity for malaria caused by Plasmodium falciparum
Quan Guo, Simon P. Duffy, Kerryn Matthews, Xiaoyan Deng, Aline T. Santoso, Emel Islamzada, Hongshen Ma
Lab Chip.2016; 16(4): 645.     CrossRef
High-throughput malaria parasite separation using a viscoelastic fluid for ultrasensitive PCR detection
Jeonghun Nam, Yong Shin, Justin Kok Soon Tan, Ying Bena Lim, Chwee Teck Lim, Sangho Kim
Lab on a Chip.2016; 16(11): 2086.     CrossRef
Research progress in electroanalytical techniques for determination of antimalarial drugs in pharmaceutical and biological samples
Neeta Thapliyal, Tirivashe E. Chiwunze, Rajshekhar Karpoormath, Rajendra N. Goyal, Harun Patel, Srinivasulu Cherukupalli
RSC Advances.2016; 6(62): 57580.     CrossRef
Visible microspectrophotometry coupled with machine learning to discriminate the erythrocytic life cycle stages of P. falciparum malaria parasites in functional single cells
John A. Adegoke, Hannah Raper, Callum Gassner, Philip Heraud, Bayden R. Wood
The Analyst.2022; 147(12): 2662.     CrossRef
ITEM-THREE analysis of a monoclonal anti-malaria antibody reveals its assembled epitope on the pfMSP119 antigen
Kwabena F.M. Opuni, Cornelia Koy, Manuela Russ, Maren Reepmeyer, Bright D. Danquah, Moritz Weresow, Astrid Alef, Peter Lorenz, Hans-Juergen Thiesen, Michael O. Glocker
Journal of Biological Chemistry.2020; 295(44): 14987.     CrossRef
Dynamical footprint of falcipain-2 catalytic triad in hemoglobin-β-bound state
I.O. Omotuyi, T. Hamada
Journal of Biomolecular Structure and Dynamics.2015; 33(5): 1027.     CrossRef
Exploring the combination characteristics of lumefantrine, an antimalarial drug and human serum albumin through spectroscopic and molecular docking studies
Kabiru Abubakar Musa, Nor Farrah Wahidah Ridzwan, Saharuddin B. Mohamad, Saad Tayyab
Journal of Biomolecular Structure and Dynamics.2021; 39(2): 691.     CrossRef
A Novel Data Augmentation Convolutional Neural Network for Detecting Malaria Parasite in Blood Smear Images
David Opeoluwa Oyewola, Emmanuel Gbenga Dada, Sanjay Misra, Robertas Damaševičius
Applied Artificial Intelligence.2022;[Epub]     CrossRef
SARS-CoV-2 and Plasmodium falciparum coinfection: a case report
Sanja Mandić, Luka Švitek, Tara Rolić, Iva Lukić, Dubravka Lišnjić, Mario Duvnjak, Ivana Sarić, Vatroslav Šerić
Infectious Diseases.2023; 55(4): 299.     CrossRef
Diurnal variation in expired breath volatiles in malaria-infected and healthy volunteers
Amalia Z Berna, James S McCarthy, X Rosalind Wang, Michelle Michie, Florence G Bravo, Julie Cassells, Stephen C Trowell
Journal of Breath Research.2018; 12(4): 046014.     CrossRef
A case of importedPlasmodium Falciparumchloroquine and Sulfadoxine-Pyrimethamine sensitive in a Finland male presentation
N P D Witari, S Masyeni, N W Rusni, K T Sumadewi, A E Pratiwi, P B Asih
IOP Conference Series: Materials Science and Engineering.2018; 434: 012145.     CrossRef
Epidemiology of Malaria in Yulin, South China 1999–2016: Imported Malaria Threatens Zero Local Case Status
Yan Yang, Yiwei Liu, Zhichun Xie, Shuzhi Wu, Lu Yang, Wen Li, Xinbin Quan
Vector-Borne and Zoonotic Diseases.2018; 18(10): 533.     CrossRef
Persistence of Imported Malaria Into the United Kingdom: An Epidemiological Review of Risk Factors and At-risk Groups
Qubekani M Moyo, Martin Besser, Roderick Lynn, Andrew M L Lever
Clinical Infectious Diseases.2019; 69(7): 1156.     CrossRef
HIV Infection and the Incidence of Malaria Among HIV-Exposed Children from Tanzania
Amara E. Ezeamama, Donna Spiegelman, Ellen Hertzmark, Ronald J. Bosch, Karim P. Manji, Christopher Duggan, Roland Kupka, Melanie W. Lo, James O. Okuma, Rodrick Kisenge, Said Aboud, Wafaie W. Fawzi
The Journal of Infectious Diseases.2012; 205(10): 1486.     CrossRef
Malaria and anaemia in pregnancy: a cross-sectional study of pregnant women in rural communities of Southeastern Nigeria
Emmanuel O. Ugwu, Cyril C. Dim, Benjamin S. Uzochukwu, Emeka I. Iloghalu, Angela O. Ugwu
International Health.2014; 6(2): 130.     CrossRef
Care-seeking delay of imported malaria to China: implications for improving post-travel healthcare for migrant workers
Guangyu Lu, Yuanyuan Cao, Qi Chen, Guoding Zhu, Olaf Müller, Jun Cao
Journal of Travel Medicine.2022;[Epub]     CrossRef
A 4-Day Incubation Period of Plasmodium falciparum Infection in a Nonimmune Patient in Ghana: A Case Report
Verner Orish, Leslie Afutu, Oladapo Ayodele, Lorena Likaj, Aleksandra Marinkovic, Adekunle Sanyaolu
Open Forum Infectious Diseases.2019;[Epub]     CrossRef
A diagnostic performance evaluation of rapid diagnostic tests and microscopy for malaria diagnosis using nested polymerase chain reaction as reference standard in a tertiary hospital in Jos, Nigeria
Okokon I Ita, Akaninyene A Otu, Kenneth Onyedibe, Anthony A Iwuafor, Edmund Banwat, Daniel Z Egah
Transactions of The Royal Society of Tropical Medicine and Hygiene.2018; 112(10): 436.     CrossRef
The utility of serial blood film testing for the diagnosis of malaria
Karan S. Makhija, Samuel Maloney, Robert Norton
Pathology.2015; 47(1): 68.     CrossRef
Malaria Disease Recommendations for Solid Organ Transplant Recipients and Donors
Lígia Camera Pierrotti, Marilyn Eckstein Levi, Silvia Maria Di Santi, Aluísio Cotrim Segurado, Eskild Petersen
Transplantation.2018; 102(2S): S16.     CrossRef
Working principle and application of magnetic separation for biomedical diagnostic at high- and low-field gradients
Sim Siong Leong, Swee Pin Yeap, JitKang Lim
Interface Focus.2016; 6(6): 20160048.     CrossRef
Deep Learning for Real-Time Malaria Parasite Detection and Counting Using YOLO-mp
Anand Koirala, Meena Jha, Srinivas Bodapati, Animesh Mishra, Girija Chetty, Praveen Kishore Sahu, Sanjib Mohanty, Timir Kanta Padhan, Jyoti Mattoo, Ajat Hukkoo
IEEE Access.2022; 10: 102157.     CrossRef
Review of Surface Enhanced Raman Spectroscopy for Malaria Diagnosis and a New Approach for the Detection of Single Parasites in the Ring Stage
Keren Chen, Clint Perlaki, Aoli Xiong, Peter Preiser, Quan Liu
IEEE Journal of Selected Topics in Quantum Electronics.2016; 22(4): 179.     CrossRef
Modeling of High-Performance SPR Refractive Index Sensor Employing Novel 2D Materials for Detection of Malaria Pathogens
Abinash Panda, Puspa Devi Pukhrambam
IEEE Transactions on NanoBioscience.2022; 21(2): 312.     CrossRef
A geostatistical framework for combining spatially referenced disease prevalence data from multiple diagnostics
Benjamin Amoah, Peter J. Diggle, Emanuele Giorgi
Biometrics.2020; 76(1): 158.     CrossRef
Clinical malaria diagnosis in pregnancy in relation to early perinatal mother‐to‐child transmission of HIV: a prospective cohort study
AE Ezeamama, C Duggan, KP Manji, D Spiegelman, E Hertzmark, RJ Bosch, R Kupka, JO Okuma, R Kisenge, S Aboud, WW Fawzi
HIV Medicine.2014; 15(5): 276.     CrossRef
LH750 hematology analyzers to identify malaria and dengue and distinguish them from other febrile illnesses
P. Sharma, M. Bhargava, D. Sukhachev, S. Datta, C. Wattal
International Journal of Laboratory Hematology.2014; 36(1): 45.     CrossRef
Informed decision-making before changing to RDT: a comparison of microscopy, rapid diagnostic test and molecular techniques for the diagnosis and identification of malaria parasites in Kassala, eastern Sudan
Mamoun M. M. Osman, Bakri Y. M. Nour, Mohamed F. Sedig, Laura De Bes, Adil M. Babikir, Ahmed A. Mohamedani, Petra F. Mens
Tropical Medicine & International Health.2010; 15(12): 1442.     CrossRef
Computational microscopic imaging for malaria parasite detection: a systematic review
D.K. DAS, R. MUKHERJEE, C. CHAKRABORTY
Journal of Microscopy.2015; 260(1): 1.     CrossRef
Minimising invasiveness in diagnostics: developing a rapid urine‐based monoclonal antibody dipstick test for malaria
Uri S. Markakpo, Kwabena M. Bosompem, Mawuli Dzodzomenyo, Anthony Danso‐Appiah, Edward E. Essuman, William K. Anyan, Mitsuko Suzuki, Judith K. Stephens, Isaac Anim‐Baidoo, Richard H. Asmah, Michael F. Ofori, Parnor Madjitey, Jonas B. Danquah, Naa Adjeley
Tropical Medicine & International Health.2016; 21(10): 1263.     CrossRef
Parasites
Elitza S. Theel, Bobbi S. Pritt, Randall T. Hayden, Donna M. Wolk, Karen C. Carroll, Yi-Wei Tang
Microbiology Spectrum.2016;[Epub]     CrossRef
Diagnostic value of rapid test for malaria among febrile neonates in a tertiary hospital in North-East Nigeria: a prospective cross-sectional study
Yasangra Rabo Adeniji, Iliya Jalo, Ikechukwu Okonkwo, Mercy Raymond Poksireni, Mohammed Manga, Oghenebrume Wariri, Halima Abdulkarim Alhassan, Elon Isaac Warnow
Archives of Disease in Childhood.2024; 109(1): 11.     CrossRef
Spatial and epidemiological drivers ofPlasmodium falciparummalaria among adults in the Democratic Republic of the Congo
Molly Deutsch-Feldman, Nicholas F Brazeau, Jonathan B Parr, Kyaw L Thwai, Jeremie Muwonga, Melchior Kashamuka, Antoinette Tshefu Kitoto, Ozkan Aydemir, Jeffrey A Bailey, Jessie K Edwards, Robert Verity, Michael Emch, Emily W Gower, Jonathan J Juliano, Ste
BMJ Global Health.2020; 5(6): e002316.     CrossRef
Modelling the impact of rapid diagnostic tests onPlasmodium vivaxmalaria in South Korea: a cost–benefit analysis
Jung Ho Kim, Jiyeon Suh, Woon Ji Lee, Heun Choi, Jong-Dae Kim, Changsoo Kim, Jun Yong Choi, Ryeojin Ko, Heewon Kim, Jeehyun Lee, Joon Sup Yeom
BMJ Global Health.2021; 6(2): e004292.     CrossRef
Malaria in British military personnel deployed to Sierra Leone: a case series
Oliver Quantick, R Howlett-Shipley, S Roughton, D Ross
Journal of the Royal Army Medical Corps.2017; 163(1): 65.     CrossRef
Highly sensitive photonic crystal fiber-based plasmonic biosensor with improved malaria detection application
Bahar Meshginqalam, Jamal Barvestani
The European Physical Journal Plus.2022;[Epub]     CrossRef
Assessment of Clinical Diagnosis, Microscopy, Rapid Diagnostic Tests, and Polymerase Chain Reaction in the Diagnosis of Plasmodium falciparum in Nigeria
Olusola Ojurongbe, Olunike Olayeni Adegbosin, Sunday Samuel Taiwo, Oyebode Armstrong Terry Alli, Olugbenga Adekunle Olowe, Taiwo Adetola Ojurongbe, Oloyede Samuel Bolaji, Oluwaseyi Adegboyega Adeyeba
Malaria Research and Treatment.2013; 2013: 1.     CrossRef
Comparison of Partec Rapid Malaria Test with Conventional Light Microscopy for Diagnosis of Malaria in Northwest Ethiopia
Meseret Birhanie
Journal of Parasitology Research.2016; 2016: 1.     CrossRef
Comparative Performance Evaluation of Routine Malaria Diagnosis at Ho Municipal Hospital
James Osei-Yeboah, Gameli Kwame Norgbe, Sylvester Yao Lokpo, Mohammed Khadijah Kinansua, Loverage Nettey, Emmanuel Alote Allotey
Journal of Parasitology Research.2016; 2016: 1.     CrossRef
Knowledge, Attitude, and Practice Related to Malaria Diagnosis among Healthcare Workers in Hospitals: A Cross-Sectional Survey
Kwuntida Uthaisar Kotepui, Manas Kotepui, Chuchard Punsawad
Journal of Tropical Medicine.2019; 2019: 1.     CrossRef
Improving Accuracy of Malaria Diagnosis in Underserved Rural and Remote Endemic Areas of Sub-Saharan Africa: A Call to Develop Multiplexing Rapid Diagnostic Tests
Rasheed O. Makanjuola, Andrew W. Taylor-Robinson
Scientifica.2020; 2020: 1.     CrossRef
Inter-rater Variability in Malaria Microscopy at the LEKMA Hospital, Ghana
Andrew Nii Adzei Bekoe, Emmanuel Alote Allotey, Elliot Elikplim Akorsu, Albert Abaka-Yawson, Samuel Adusei, Godsway Edem Kpene, Precious Kwablah Kwadzokpui, Lizandra Guidi Magalhães
Journal of Parasitology Research.2020; 2020: 1.     CrossRef
Role of Platelet Indices as a Potential Marker for Malaria Severity
Biruk Bayleyegn, Fikir Asrie, Aregawi Yalew, Berhanu Woldu, Francisco Gonzalez Salazar
Journal of Parasitology Research.2021; 2021: 1.     CrossRef
Computational Methods for Automated Analysis of Malaria Parasite Using Blood Smear Images: Recent Advances
Shankar Shambhu, Deepika Koundal, Prasenjit Das, Vinh Truong Hoang, Kiet Tran-Trung, Hamza Turabieh, Zhongxu Hu
Computational Intelligence and Neuroscience.2022; 2022: 1.     CrossRef
Impact of Malaria Diagnostic Technologies on the Disease Burden in the Sub-Saharan Africa
Josephine Wambani, Patrick Okoth, Linda Amoah
Journal of Tropical Medicine.2022; 2022: 1.     CrossRef
The Malaria Burden: A South African Perspective
Marissa Balmith, Charlise Basson, Sarel J. Brand, Jianbing Mu
Journal of Tropical Medicine.2024; 2024: 1.     CrossRef
Agreement among rapid diagnostic tests, urine malaria tests, and microscopy in malaria diagnosis of adult patients in southwestern Nigeria
Jonathan Ayobami Oyeniyi, Ibrahim Sebutu Bello, Olanrewaju Oloyede Oyegbade, Azeez Oyemomi Ibrahim, Oyeladun Funmi Okunromade, Oladipupo Omolade Fakoya
Journal of International Medical Research.2022; 50(9): 030006052211227.     CrossRef
A preliminary comparative report of quantitative buffy coat and modified quantitative buffy coat with peripheral blood smear in malaria diagnosis
Manali Kochareka, Sougat Sarkar, Debjani Dasgupta, Umesh Aigal
Pathogens and Global Health.2012; 106(6): 335.     CrossRef
Prospective study on severe malaria among in-patients at Bombo regional hospital, Tanga, north-eastern Tanzania
Hamisi A Msangeni, Mathias L Kamugisha, Samuel H Sembuche, Ezekiel K Malecela, Juma A Akida, Filbert F Temba, Bruno P Mmbando, Martha M Lemnge
BMC Infectious Diseases.2011;[Epub]     CrossRef
Real-time PCR diagnosis of Plasmodium vivax among blood donors
Sergio Batista-dos-Santos, Milene Raiol, Sidney Santos, Maristela G Cunha, Ândrea Ribeiro-dos-Santos
Malaria Journal.2012;[Epub]     CrossRef
What is the best strategy for the prevention of transfusion-transmitted malaria in sub-Saharan African countries where malaria is endemic?
Jobert Richie N Nansseu, Jean Jacques N Noubiap, Shalom Tchokfe Ndoula, Albert Frank M Zeh, Chavely Gwladys Monamele
Malaria Journal.2013;[Epub]     CrossRef
Impact of a training course on the quality of malaria diagnosis by microscopy in Angola
Sofia Moura, Cláudia Fançony, Clara Mirante, Marcela Neves, Luís Bernardino, Filomeno Fortes, Maria do Rosário Sambo, Miguel Brito
Malaria Journal.2014;[Epub]     CrossRef
Perceptions of malaria and acceptance of rapid diagnostic tests and related treatment practises among community members and health care providers in Greater Garissa, North Eastern Province, Kenya
Emma Diggle, Ramin Asgary, Georgia Gore-Langton, Erupe Nahashon, James Mungai, Rebecca Harrison, Abdullahi Abagira, Katie Eves, Zoya Grigoryan, David Soti, Elizabeth Juma, Richard Allan
Malaria Journal.2014;[Epub]     CrossRef
Are rapid diagnostic tests more accurate in diagnosis of plasmodium falciparum malaria compared to microscopy at rural health centres?
Vincent Batwala, Pascal Magnussen, Fred Nuwaha
Malaria Journal.2010;[Epub]     CrossRef
Quantitative phase imaging and Raman micro-spectroscopy applied to Malaria
Jacques Klossa, Benoit Wattelier, Teddy Happillon, Dominique Toubas, Lucie de Laulanie, Valérie Untereiner, Pierre Bon, Michel Manfait
Diagnostic Pathology.2013;[Epub]     CrossRef
Evaluation of fluorescent in-situ hybridization technique for diagnosis of malaria in Ahero Sub-County hospital, Kenya
Regina Kandie, Rachel Ochola, Kariuki Njaanake
BMC Infectious Diseases.2018;[Epub]     CrossRef
Diagnostic tools used in the evaluation of acute febrile illness in South India: a scoping review
Divyalakshmi Bhaskaran, Sarabjit Singh Chadha, Sanjay Sarin, Rajashree Sen, Sonia Arafah, Sabine Dittrich
BMC Infectious Diseases.2019;[Epub]     CrossRef
Occurrence and seasonal variation of human Plasmodium infection in Punjab Province, Pakistan
Naveeda Akhtar Qureshi, Huma Fatima, Muhammad Afzal, Aamir Ali Khattak, Muhammad Ali Nawaz
BMC Infectious Diseases.2019;[Epub]     CrossRef
Implementation and application of a multiplex assay to detect malaria-specific antibodies: a promising tool for assessing malaria transmission in Southeast Asian pre-elimination areas
Karen Kerkhof, Lydie Canier, Saorin Kim, Somony Heng, Tho Sochantha, Siv Sovannaroth, Inès Vigan-Womas, Marc Coosemans, Vincent Sluydts, Didier Ménard, Lies Durnez
Malaria Journal.2015;[Epub]     CrossRef
Reduced deformability of parasitized red blood cells as a biomarker for anti-malarial drug efficacy
Xiaoyan Deng, Simon P. Duffy, Marie-Eve Myrand-Lapierre, Kerryn Matthews, Aline Teresa Santoso, Yi-Ling Du, Katherine S. Ryan, Hongshen Ma
Malaria Journal.2015;[Epub]     CrossRef
The development of malaria diagnostic techniques: a review of the approaches with focus on dielectrophoretic and magnetophoretic methods
Surasak Kasetsirikul, Jirayut Buranapong, Werayut Srituravanich, Morakot Kaewthamasorn, Alongkorn Pimpin
Malaria Journal.2016;[Epub]     CrossRef
Field evaluation of diagnostic performance of malaria rapid diagnostic tests in western Kenya
Elizabeth W. Wanja, Nickline Kuya, Collins Moranga, Mark Hickman, Jacob D. Johnson, Carolyne Moseti, Lalaine Anova, Bernhards Ogutu, Colin Ohrt
Malaria Journal.2016;[Epub]     CrossRef
Serological markers to measure recent changes in malaria at population level in Cambodia
Karen Kerkhof, Vincent Sluydts, Laura Willen, Saorin Kim, Lydie Canier, Somony Heng, Takafumi Tsuboi, Tho Sochantha, Siv Sovannaroth, Didier Ménard, Marc Coosemans, Lies Durnez
Malaria Journal.2016;[Epub]     CrossRef
Performance of loop-mediated isothermal amplification (LAMP) for the diagnosis of malaria among malaria suspected pregnant women in Northwest Ethiopia
Banchamlak Tegegne, Sisay Getie, Wossenseged Lemma, Abu Naser Mohon, Dylan R. Pillai
Malaria Journal.2017;[Epub]     CrossRef
New potential Plasmodium brasilianum hosts: tamarin and marmoset monkeys (family Callitrichidae)
Denise A. M. Alvarenga, Anielle Pina-Costa, Cesare Bianco, Silvia B. Moreira, Patricia Brasil, Alcides Pissinatti, Claudio T. Daniel-Ribeiro, Cristiana F. A. Brito
Malaria Journal.2017;[Epub]     CrossRef
Detection of Plasmodium falciparum DNA in saliva samples stored at room temperature: potential for a non-invasive saliva-based diagnostic test for malaria
Kenji O. Mfuh, Samuel Tassi Yunga, Livo F. Esemu, Obase Ngemani Bekindaka, Jessica Yonga, Jean Claude Djontu, Calixt D. Mbakop, Diane W. Taylor, Vivek R. Nerurkar, Rose G. F. Leke
Malaria Journal.2017;[Epub]     CrossRef
Development of a high-throughput flexible quantitative suspension array assay for IgG against multiple Plasmodium falciparum antigens
Itziar Ubillos, Joseph J. Campo, Alfons Jiménez, Carlota Dobaño
Malaria Journal.2018;[Epub]     CrossRef
Malaria and the ‘last’ parasite: how can technology help?
Ngoc Minh Pham, Walter Karlen, Hans-Peter Beck, Emmanuel Delamarche
Malaria Journal.2018;[Epub]     CrossRef
Accuracy of One Step malaria rapid diagnostic test (RDT) in detecting Plasmodium falciparum placental malaria infection in women living in Yaoundé, Cameroon
Rosette Megnekou, Jean Claude Djontu, Benderli C. Nana, Jude D. Bigoga, Maurice Fotso, Balotin Fogang, Rose F. G. Leke
Malaria Journal.2018;[Epub]     CrossRef
Diagnostic performance of CareStart™ malaria HRP2/pLDH test in comparison with standard microscopy for detection of uncomplicated malaria infection among symptomatic patients, Eastern Coast of Tanzania
George M. Bwire, Billy Ngasala, Manase Kilonzi, Wigilya P. Mikomangwa, Fatuma F. Felician, Appolinary A. R. Kamuhabwa
Malaria Journal.2019;[Epub]     CrossRef
Malaria distribution and performance of malaria diagnostic methods in Malaysia (1980–2019): a systematic review
Mohd Amirul Fitri A. Rahim, Mohd Bakhtiar Munajat, Zulkarnain Md Idris
Malaria Journal.2020;[Epub]     CrossRef
Analytical validation of a real-time hydrolysis probe PCR assay for quantifying Plasmodium falciparum parasites in experimentally infected human adults
Claire Y. T. Wang, Emma L. Ballard, Zuleima Pava, Louise Marquart, Jane Gaydon, Sean C. Murphy, David Whiley, Peter O’Rourke, James S. McCarthy
Malaria Journal.2021;[Epub]     CrossRef
mHAT app for automated malaria rapid test result analysis and aggregation: a pilot study
Carson Moore, Thomas Scherr, Japhet Matoba, Caison Sing’anga, Mukuma Lubinda, Phil Thuma, David Wright
Malaria Journal.2021;[Epub]     CrossRef
Application of dried blood spot sample pooling strategies for Plasmodium 18S rRNA biomarker testing to facilitate identification of infected persons in large-scale epidemiological studies
Ming Chang, Selena Johnston, Annette M. Seilie, Dianna Hergott, Sean C. Murphy
Malaria Journal.2021;[Epub]     CrossRef
Performance evaluation of RDT, light microscopy, and PET-PCR for detecting Plasmodium falciparum malaria infections in the 2018 Zambia National Malaria Indicator Survey
Mulenga C. Mwenda, Abebe A. Fola, Ilinca I. Ciubotariu, Conceptor Mulube, Brenda Mambwe, Rachael Kasaro, Moonga B. Hawela, Busiku Hamainza, John M. Miller, Giovanna Carpi, Daniel J. Bridges
Malaria Journal.2021;[Epub]     CrossRef
Plasmodium knowlesi: the game changer for malaria eradication
Wenn-Chyau Lee, Fei Wen Cheong, Amirah Amir, Meng Yee Lai, Jia Hui Tan, Wei Kit Phang, Shahhaziq Shahari, Yee-Ling Lau
Malaria Journal.2022;[Epub]     CrossRef
Willingness to accept malaria vaccine among caregivers of under-5 children in Southwest Ethiopia: a community based cross-sectional study
Getachew Asmare
Malaria Journal.2022;[Epub]     CrossRef
Key considerations, target product profiles, and research gaps in the application of infrared spectroscopy and artificial intelligence for malaria surveillance and diagnosis
Issa H. Mshani, Doreen J. Siria, Emmanuel P. Mwanga, Bazoumana BD. Sow, Roger Sanou, Mercy Opiyo, Maggy T. Sikulu-Lord, Heather M. Ferguson, Abdoulaye Diabate, Klaas Wynne, Mario González-Jiménez, Francesco Baldini, Simon A. Babayan, Fredros Okumu
Malaria Journal.2023;[Epub]     CrossRef
Factors affecting delays in seeking treatment among malaria patients during the pre-certification phase in China
Lianyu Jia, Xiaoyu Chen, Zhanchun Feng, Shangfeng Tang, Da Feng
Malaria Journal.2024;[Epub]     CrossRef
Detection and stage classification of Plasmodium falciparum from images of Giemsa stained thin blood films using random forest classifiers
Syed Saiden Abbas, Tjeerd M. H. Dijkstra
Diagnostic Pathology.2020;[Epub]     CrossRef
Evaluating interventions to improve test, treat, and track (T3) malaria strategy among over-the-counter medicine sellers (OTCMS) in some rural communities of Fanteakwa North district, Ghana: study protocol for a cluster randomized controlled trial
Olajoju Temidayo Soniran, Benjamin Abuaku, Collins Stephen Ahorlu
Trials.2020;[Epub]     CrossRef
Diagnostic tools in childhood malaria
Amirah Amir, Fei-Wen Cheong, Jeremy R. De Silva, Yee-Ling Lau
Parasites & Vectors.2018;[Epub]     CrossRef
Malaria therapeutics: are we close enough?
Himani Tripathi, Preshita Bhalerao, Sujeet Singh, Hemant Arya, Bader Saud Alotaibi, Summya Rashid, Mohammad Raghibul Hasan, Tarun Kumar Bhatt
Parasites & Vectors.2023;[Epub]     CrossRef
An optimised YOLOv4 deep learning model for efficient malarial cell detection in thin blood smear images
Dhevisha Sukumarran, Khairunnisa Hasikin, Anis Salwa Mohd Khairuddin, Romano Ngui, Wan Yusoff Wan Sulaiman, Indra Vythilingam, Paul Cliff Simon Divis
Parasites & Vectors.2024;[Epub]     CrossRef
Clinical malaria diagnosis: rule-based classification statistical prototype
Francis Bbosa, Ronald Wesonga, Peter Jehopio
SpringerPlus.2016;[Epub]     CrossRef
Insecticide resistance in malaria-transmitting mosquitoes in Zimbabwe: a review
White Soko, Moses J. Chimbari, Samson Mukaratirwa
Infectious Diseases of Poverty.2015;[Epub]     CrossRef
Cost-effectiveness analysis of malaria rapid diagnostic tests: a systematic review
Xiao-Xiao Ling, Jia-Jie Jin, Guo-Ding Zhu, Wei-Ming Wang, Yuan-Yuan Cao, Meng-Meng Yang, Hua-Yun Zhou, Jun Cao, Jia-Yan Huang
Infectious Diseases of Poverty.2019;[Epub]     CrossRef
Profile and determinants of delayed care-seeking and diagnosis among patients with imported malaria: a retrospective study in China, 2014–2021
Tao Zhang, Duoquan Wang, Yingjun Qian, Wei Ruan, Ying Liu, Jing Xia, Hui Yan, Yuan Sui, Shenning Lu, Xian Xu, Jingjing Jiang, Xiaofeng Lyu, Shuqi Wang, Shizhu Li, Weidong Li
Infectious Diseases of Poverty.2022;[Epub]     CrossRef
Targeted repression of Plasmodium apicortin by host microRNA impairs malaria parasite growth and invasion
Malabika Chakrabarti, Swati Garg, Ayana Rajagopal, Soumya Pati, Shailja Singh
Disease Models & Mechanisms.2020;[Epub]     CrossRef
Bayesian evaluation of the performance of three diagnostic tests for Plasmodium falciparum infection in a low-transmission setting in Kilifi County, Kenya
Marshal M. Mweu, Juliana Wambua, Fixtan Njuga, Philip Bejon, Daniel Mwanga
Wellcome Open Research.2019; 4: 67.     CrossRef
Bayesian evaluation of the performance of three diagnostic tests for Plasmodium falciparum infection in a low-transmission setting in Kilifi County, Kenya
Marshal M. Mweu, Juliana Wambua, Fixtan Njuga, Philip Bejon, Daniel Mwanga
Wellcome Open Research.2019; 4: 67.     CrossRef
Bayesian evaluation of the performance of three diagnostic tests for Plasmodium falciparum infection in a low-transmission setting in Kilifi County, Kenya
Marshal M. Mweu, Juliana Wambua, Fixtan Njuga, Philip Bejon, Daniel Mwanga
Wellcome Open Research.2019; 4: 67.     CrossRef
Assessing the knowledge and practices of primary healthcare workers on malaria diagnosis and related challenges in view of COVID-19 outbreak in a Nigerian Southwestern metropolis
Esther Oluwayemisi Ayandipo, Deborah Babatunde, Oladipo Afolayan, Olabisi Kalejaye, Taiwo Obembe, Javier H Eslava-Schmalbach
PLOS Global Public Health.2023; 3(1): e0000625.     CrossRef
Impact of malaria diagnostic choice on monitoring of Plasmodium falciparum prevalence estimates in the Democratic Republic of the Congo and relevance to control programs in high-burden countries
Alpha Oumar Diallo, Kristin Banek, Melchior Mwandagalirwa Kashamuka, Joseph Alexandre Mavungu Bala, Marthe Nkalani, Georges Kihuma, Tommy Mambulu Nseka, Joseph Losoma Atibu, Georges Emo Mahilu, Lauren McCormick, Samuel J. White, Rachel Sendor, Cyrus Sinai
PLOS Global Public Health.2023; 3(7): e0001375.     CrossRef
Colorimetric Detection of Plasmodium vivax in Urine Using MSP10 Oligonucleotides and Gold Nanoparticles
Yossef Alnasser, Cusi Ferradas, Taryn Clark, Maritza Calderon, Alejandro Gurbillon, Dionicia Gamboa, Uri S. McKakpo, Isabella A. Quakyi, Kwabena M. Bosompem, David J. Sullivan, Joseph M. Vinetz, Robert H. Gilman, Eric Dumonteil
PLOS Neglected Tropical Diseases.2016; 10(10): e0005029.     CrossRef
Fully automated point-of-care differential diagnosis of acute febrile illness
Sebastian Hin, Benjamin Lopez-Jimena, Mohammed Bakheit, Vanessa Klein, Seamus Stack, Cheikh Fall, Amadou Sall, Khalid Enan, Mohamed Mustafa, Liz Gillies, Viorel Rusu, Sven Goethel, Nils Paust, Roland Zengerle, Sieghard Frischmann, Manfred Weidmann, Konsta
PLOS Neglected Tropical Diseases.2021; 15(2): e0009177.     CrossRef
Development of a Novel Fluorophore for Real-Time Biomonitoring System
Hyun-Ok Song, Binna Lee, Ram Prasad Bhusal, Byounghun Park, Kyoungsik Yu, Chom-Kyu Chong, PyoYun Cho, Sung Yeon Kim, Hak Sung Kim, Hyun Park, Luzia Helena Carvalho
PLoS ONE.2012; 7(11): e48459.     CrossRef
Evaluation of a Novel Magneto-Optical Method for the Detection of Malaria Parasites
Ágnes Orbán, Ádám Butykai, András Molnár, Zsófia Pröhle, Gergö Fülöp, Tivadar Zelles, Wasan Forsyth, Danika Hill, Ivo Müller, Louis Schofield, Maria Rebelo, Thomas Hänscheid, Stephan Karl, István Kézsmárki, Stuart Alexander Ralph
PLoS ONE.2014; 9(5): e96981.     CrossRef
Fluorescence In Situ Hybridization (FISH) Assays for Diagnosing Malaria in Endemic Areas
Jyotsna Shah, Olivia Mark, Helena Weltman, Nicolas Barcelo, Wai Lo, Danuta Wronska, Srinivas Kakkilaya, Aravinda Rao, Shalia T. Bhat, Ruchi Sinha, Sabah Omar, Peter O’bare, Manuel Moro, Robert H. Gilman, Nick Harris, Henk D. F. H. Schallig
PLOS ONE.2015; 10(9): e0136726.     CrossRef
A portable image-based cytometer for rapid malaria detection and quantification
Dahou Yang, Gowtham Subramanian, Jinming Duan, Shaobing Gao, Li Bai, Rajesh Chandramohanadas, Ye Ai, Georges Snounou
PLOS ONE.2017; 12(6): e0179161.     CrossRef
Malaria diagnosis by PCR revealed differential distribution of mono and mixed species infections by Plasmodium falciparum and P. vivax in India
Nisha Siwal, Upasana Shyamsunder Singh, Manoswini Dash, Sonalika Kar, Swati Rani, Charu Rawal, Rajkumar Singh, Anupkumar R. Anvikar, Veena Pande, Aparup Das, Georges Snounou
PLOS ONE.2018; 13(3): e0193046.     CrossRef
Seasonal variations in Plasmodium falciparum parasite prevalence assessed by varying diagnostic tests in asymptomatic children in southern Ghana
Ruth Ayanful-Torgby, Neils B. Quashie, Johnson N. Boampong, Kim C. Williamson, Linda E. Amoah, Luzia Helena Carvalho
PLOS ONE.2018; 13(6): e0199172.     CrossRef
Assessing the performance of only HRP2 and HRP2 with pLDH based rapid diagnostic tests for the diagnosis of malaria in middle Ghana, Africa
Dennis Adu-Gyasi, Kwaku Poku Asante, Sabastina Amoako, Nicholas Amoako, Love Ankrah, David Dosoo, Samuel Kofi Tchum, George Adjei, Oscar Agyei, Seeba Amenga-Etego, Seth Owusu-Agyei, Henk D. F. H. Schallig
PLOS ONE.2018; 13(9): e0203524.     CrossRef
COVID-19 in patients presenting with malaria-like symptoms at a primary healthcare facility in Accra, Ghana
Issabella Asamoah, Mildred Adusei-Poku, Priscilla Vandyck-Sey, Allen Steele-Dadzie, Atta Senior Kuffour, Albert Turkson, Ivy Asantewaa Asante, Kantanka Addo-Osafo, Quaneeta Mohktar, Bright Adu, Yaw A. Afrane, Kwamena W. C. Sagoe, Sanjai Kumar
PLOS ONE.2024; 19(2): e0298088.     CrossRef
Utility of Rapid Diagnostic Tests for Detection of Malarial Antigens and Their Comparison with Peripheral Blood Smear Examination
Shreshy Singh, Sangeeta Dey Akoljam, Dhananjay Kumar, Aninda Sen, Ashit Kumar
Journal of Evolution of Medical and Dental Sciences.2020; 9(15): 1291.     CrossRef
LABORATORY DIAGNOSIS OF MALARIA, A REVIEW
Raghuveer C. V, Mangala Goneppanavar
Journal of Evolution of Medical and Dental Sciences.2012; 1(4): 453.     CrossRef
Novel techniques and future directions in molecular diagnosis of malaria in resource-limited settings
Eniyou Cheryll Oriero, Jean-Pierre Van Geertruyden, Davis C Nwakanma, Umberto D’Alessandro, Jan Jacobs
Expert Review of Molecular Diagnostics.2015; 15(11): 1419.     CrossRef
Development of inexpensive blood imaging systems: where are we now?
Kaiqin Chu, Zachary J Smith, Sebastian Wachsmann-Hogiu
Expert Review of Medical Devices.2015; 12(5): 613.     CrossRef
Serological and molecular techniques applied for identification of Plasmodium spp. in blood samples from nonhuman primates
Mayra Araguaia Pereira Figueiredo, Silvia Maria Di Santi, Wilson Gómez Manrique, Marcos Rogério André, Rosangela Zacarias Machado
Revista Brasileira de Parasitologia Veterinária.2018;[Epub]     CrossRef
Imported malaria with chikungunya co-infection: A case report
Anupam Das, Manodeep Sen, Pranshu Pandey, Apurva Rautela, Haniya Jafar, Vikramjeet Singh, Jaya Garg, Jyotsna Agarwal
IP International Journal of Medical Microbiology and Tropical Diseases.2022; 8(4): 342.     CrossRef
A STUDY OF PAPAYA EXTRACT IN THE TREATMENT OF LOW PLATELET COUNT IN MALARIA AND DENGUE CHILDREN BELOW 18 YEARS
Gopi Mohan R
Journal of Evidence Based Medicine and Healthcare.2017; 4(21): 1193.     CrossRef
EFFECT OF ARTIFICIAL INTELLIGENCE-BASED TECHNOLOGY IN MALARIA DIAGNOSIS
Gorav Kumar, Prabhash Bhavsar
Journal of Evidence Based Medicine and Healthcare.2019; 6(29): 1923.     CrossRef
A Comparative Study of Diagnostic Methods of Malaria - Microscopy Versus Rapid Diagnostic Test Kits in a Tertiary Care Hospital, Rajasthan
Saumya Singh, Neelam Chauhan, Jyoti Tomar, Aditya Pratap Singh
Journal of Evidence Based Medicine and Healthcare.2021; 8(22): 1826.     CrossRef
Five-Year Trend of Malaria Prevalence in Mojo Town, Central Ethiopia: Shifting Burden of the Disease and Its Implication for Malaria Elimination: A Retrospective Study
Andargie Abate, Mesfin Assefa, Lemu Golassa
Infection and Drug Resistance.2022; Volume 15: 455.     CrossRef
A Review of Clinical Trials of Cancer and Its Treatment as a Vaccine
Chandani Chandarana, Anuradha Tiwari
Reviews on Recent Clinical Trials.2024; 19(1): 7.     CrossRef
The Comparison of Real-time-PCR-HRM and Microscopy Methods for Detection of Mixed Plasmodium spp. Infections in Laghman Province, Afghanistan
Abdolhossein Dalimi, Sayed Hussain Mosawi
Infectious Disorders - Drug Targets .2021; 21(3): 399.     CrossRef
Linear and Nonlinear Associations between Meteorological Variables and the Incidence of Malaria in Zahedan District Southwest of Iran 2000-2019
Sairan Nili, Narges Khanjani, Ebrahim Ghaderi, Minoo Mohammadkhani
The Open Public Health Journal.2023;[Epub]     CrossRef
Health Information Literacy among Malaria Patients in Ghana: Sustainable Development Goals (SDG) 3 in Focus
Dominic Agyei Dankwah, George Clifford Yamson
The Open Public Health Journal.2019; 12(1): 100.     CrossRef
Phytochemical Analysis andIn vitroEvidence of Antimalarial, Antibacterial, Antifungal, Antioxidant and Anti-inflammatory Activities of Ethanol Extract ofEmblica officinalisFruit
Jyoti Kaushik, Monu Yadav, Nidhi Sharma, Deepak K. Jindal, Kajal Joshi, Mini Dahiya, Aakash Deep
Anti-Infective Agents.2022;[Epub]     CrossRef
LIGAND-BASED VIRTUAL SCREENING OF FDA-APPROVED DRUGS TO IDENTIFY NEW INHIBITORS AGAINST LACTATE DEHYDROGENASE ENZYME OF MALARIA PARASITES
HASANAIN ABDULHAMEED ODHAR, AHMED FADHIL HASHIM, SUHAD SAMI HUMADI, SALAM WAHEED AHJEL
International Journal of Applied Pharmaceutics.2024; : 255.     CrossRef
A SYSTEMATIC REVIEW ON MALARIA DISEASE AND ITS TREATMENTS FOCUS ON ARTEMETHER DRUG
SWAPNIL D. PHALAK, VISHAL BODKE, VISHAL BODKE, SATISH PANDAV, MALOJI RANAWARE
International Journal of Current Pharmaceutical Research.2024; : 1.     CrossRef
Surveillance of Viral Hemorrhagic Fever Viruses in Lassa Fever Suspects in Ondo State, Nigeria
Azuka Patrick Okwuraiwe, Oumar Faye, Fehintola Anthonia Ige, Ayorinde Babatunde James, Joseph Ojonugwa Shaibu, Martin Faye, Olufemi Samuel Amoo, Oumar NDiaye, Olumuyiwa Babalola Salu , Sunday Aremu Omilabu, Rosemary Ajuma Audu
European Journal of Medical and Health Sciences.2022; 4(3): 78.     CrossRef
Factors associated with the timely diagnosis of malaria and the utilization of types of healthcare facilities: a retrospective study in the Republic of Korea
HyunJung Kim, Sangwoo Tak, So-dam Lee, Seongwoo Park, Kyungwon Hwang
Osong Public Health and Research Perspectives.2024; 15(2): 159.     CrossRef
Diagnostic Value of Plasmotec Malaria-3 Antigen Detection on Gold Standard Microscopy
Trieva Verawaty Butarbutar, Puspa Wardhani, Aryati Aryati
INDONESIAN JOURNAL OF CLINICAL PATHOLOGY AND MEDICAL LABORATORY.2020; 26(2): 210.     CrossRef
Evaluation of wondfo rapid diagnostic kit (Pf-HRP2/PAN-pLDH) for diagnosis of malaria by using nano-gold immunochromatographic assay
Junlin Wu, Yunping Peng, Xiaoyun Liu, Wenmei Li, Shixing Tang
Acta Parasitologica.2014;[Epub]     CrossRef
Erythrocyte segmentation for quantification in microscopic images of thin blood smears
Salam Shuleenda Devi, Joyeeta Singha, Manish Sharma, Rabul Hussain Laskar, Sabu M. Thampi, El-Sayed M. El-Alfy
Journal of Intelligent & Fuzzy Systems.2017; 32(4): 2847.     CrossRef
Malaria Parasite Detection Using a Quantum-Convolutional Network
Javaria Amin, Muhammad Almas Anjum, Abida Sharif, Mudassar Raza, Seifedine Kadry, Yunyoung Nam
Computers, Materials & Continua.2022; 70(3): 6023.     CrossRef
Delayed Diagnosis of Falciparum Malaria with Acute Kidney Injury
Iee Ho Choi, Pyoung Han Hwang, Sam Im Choi, Dae-Yeol Lee, Min Sun Kim
Journal of Korean Medical Science.2016; 31(9): 1499.     CrossRef
Nested-PCR and a New ELISA-Based NovaLisa Test Kit for Malaria Diagnosis in an Endemic Area of Thailand
Pimwan Thongdee, Wanna Chaijaroenkul, Jiraporn Kuesap, Kesara Na-Bangchang
The Korean Journal of Parasitology.2014; 52(4): 377.     CrossRef
Malaria Endemicity in the Rural Communities of Ebonyi State, Nigeria
David Ekene Nwele, Ikechukwu Oliver Onyali, Milliam Okwudili Iwueze, Michael Okpara Elom, Ogbonna Elom Sabastian Uguru
The Korean Journal of Parasitology.2022; 60(3): 173.     CrossRef
Comparative Assessment of Diagnostic Performance of Cytochrome Oxidase Multiplex PCR and 18S rRNA Nested PCR
Preeti Kumari, Swati Sinha, Renuka Gahtori, Afshana Quadiri, Paras Mahale, Deepali Savargaonkar, Veena Pande, Bina Srivastava, Himmat Singh, Anupkumar R Anvikar
The Korean Journal of Parasitology.2022; 60(4): 295.     CrossRef
Cost Effectiveness of Giemsa versus Field’s Staining Technique: Implications for Malaria Diagnosis among Children in a Busy Hospital Setting in Uganda
Juliana Namutundu, Nsobya Samuel Lubwama, Yeka Adoke, Chrispus Mayora, Sebastian Olikira Baine
Nursing and Health Care.2016; : 26.     CrossRef
Diagnostic Methods for Non-Falciparum Malaria
Alba Marina Gimenez, Rodolfo F. Marques, Matías Regiart, Daniel Youssef Bargieri
Frontiers in Cellular and Infection Microbiology.2021;[Epub]     CrossRef
Potential Opportunities and Challenges of Deploying Next Generation Sequencing and CRISPR-Cas Systems to Support Diagnostics and Surveillance Towards Malaria Control and Elimination in Africa
Beatus M. Lyimo, Zachary R. Popkin-Hall, David J. Giesbrecht, Celine I. Mandara, Rashid A. Madebe, Catherine Bakari, Dativa Pereus, Misago D. Seth, Ramadhan M. Ngamba, Ruth B. Mbwambo, Bronwyn MacInnis, Daniel Mbwambo, Issa Garimo, Frank Chacky, Sijenunu
Frontiers in Cellular and Infection Microbiology.2022;[Epub]     CrossRef
Grand challenges in major tropical diseases
Beatriz Barreto-Duarte, Mariana Araújo-Pereira, João P. Miguez-Pinto, Isabella B. B. Ferreira, Rodrigo C. Menezes, Gabriela L. Rosier, Caian L. Vinhaes, Mateus Maggitti-Bezerril, Klauss Villalva-Serra, Bruno B. Andrade
Frontiers in Tropical Diseases.2022;[Epub]     CrossRef
Evaluation of an automated microscope using machine learning for the detection of malaria in travelers returned to the UK
Roxanne R. Rees-Channer, Christine M. Bachman, Lynn Grignard, Michelle L. Gatton, Stephen Burkot, Matthew P. Horning, Charles B. Delahunt, Liming Hu, Courosh Mehanian, Clay M. Thompson, Katherine Woods, Paul Lansdell, Sonal Shah, Peter L. Chiodini
Frontiers in Malaria.2023;[Epub]     CrossRef
Advances and challenges in automated malaria diagnosis using digital microscopy imaging with artificial intelligence tools: A review
Carles Rubio Maturana, Allisson Dantas de Oliveira, Sergi Nadal, Besim Bilalli, Francesc Zarzuela Serrat, Mateu Espasa Soley, Elena Sulleiro Igual, Mercedes Bosch, Anna Veiga Lluch, Alberto Abelló, Daniel López-Codina, Tomàs Pumarola Suñé, Elisa Sayrol Cl
Frontiers in Microbiology.2022;[Epub]     CrossRef
Aptamer Technology: Adjunct Therapy for Malaria
Nik Nik Kamarudin, Nurul Mohammed, Khairul Mustaffa
Biomedicines.2017; 5(1): 1.     CrossRef
Review of Microdevices for Hemozoin-Based Malaria Detection
Vitória Baptista, Weng Kung Peng, Graça Minas, Maria Isabel Veiga, Susana O. Catarino
Biosensors.2022; 12(2): 110.     CrossRef
Point-of-Care Diagnostics in Low Resource Settings: Present Status and Future Role of Microfluidics
Shikha Sharma, Julia Zapatero-Rodríguez, Pedro Estrela, Richard O'Kennedy
Biosensors.2015; 5(3): 577.     CrossRef
Development of an Immunosensor for PfHRP 2 as a Biomarker for Malaria Detection
Aver Hemben, Jon Ashley, Ibtisam Tothill
Biosensors.2017; 7(3): 28.     CrossRef
Sensing and Detection Capabilities of One-Dimensional Defective Photonic Crystal Suitable for Malaria Infection Diagnosis from Preliminary to Advanced Stage: Theoretical Study
Sujit Kumar Saini, Suneet Kumar Awasthi
Crystals.2023; 13(1): 128.     CrossRef
Malaria Rapid Diagnostic Tests: Literary Review and Recommendation for a Quality Assurance, Quality Control Algorithm
Michael J. Kavanaugh, Steven E. Azzam, David M. Rockabrand
Diagnostics.2021; 11(5): 768.     CrossRef
Diagnosing Malaria Patients with Plasmodium falciparum and vivax Using Deep Learning for Thick Smear Images
Yasmin M. Kassim, Feng Yang, Hang Yu, Richard J. Maude, Stefan Jaeger
Diagnostics.2021; 11(11): 1994.     CrossRef
An Efficient and Effective Framework for Intestinal Parasite Egg Detection Using YOLOv5
Satish Kumar, Tasleem Arif, Gulfam Ahamad, Anis Ahmad Chaudhary, Salahuddin Khan, Mohamed A. M. Ali
Diagnostics.2023; 13(18): 2978.     CrossRef
Supporting Malaria Diagnosis Using Deep Learning and Data Augmentation
Kenia Hoyos, William Hoyos
Diagnostics.2024; 14(7): 690.     CrossRef
Single Domain Antibodies as New Biomarker Detectors
Chiuan Leow, Katja Fischer, Chiuan Leow, Qin Cheng, Candy Chuah, James McCarthy
Diagnostics.2017; 7(4): 52.     CrossRef
Plasmodium falciparum Histidine-Rich Protein 2 and 3 Gene Deletions and Their Implications in Malaria Control
Josphat Nyataya, John Waitumbi, Victor A. Mobegi, Ayman Noreddin, Mohamed E. El Zowalaty
Diseases.2020; 8(2): 15.     CrossRef
A Deep Learning Approach for Segmentation of Red Blood Cell Images and Malaria Detection
Maria Delgado-Ortet, Angel Molina, Santiago Alférez, José Rodellar, Anna Merino
Entropy.2020; 22(6): 657.     CrossRef
Enhancing Gene Co-Expression Network Inference for the Malaria Parasite Plasmodium falciparum
Qi Li, Katrina A. Button-Simons, Mackenzie A. C. Sievert, Elias Chahoud, Gabriel F. Foster, Kaitlynn Meis, Michael T. Ferdig, Tijana Milenković
Genes.2024; 15(6): 685.     CrossRef
Converging Human and Malaria Vector Diagnostics with Data Management towards an Integrated Holistic One Health Approach
Konstantinos Mitsakakis, Sebastian Hin, Pie Müller, Nadja Wipf, Edward Thomsen, Michael Coleman, Roland Zengerle, John Vontas, Konstantinos Mavridis
International Journal of Environmental Research and Public Health.2018; 15(2): 259.     CrossRef
Characterizing the Spatial Determinants and Prevention of Malaria in Kenya
Sucharita Gopal, Yaxiong Ma, Chen Xin, Joshua Pitts, Lawrence Were
International Journal of Environmental Research and Public Health.2019; 16(24): 5078.     CrossRef
MiRNA: Biological Regulator in Host-Parasite Interaction during Malaria Infection
Poonam Kataria, Neha Surela, Amrendra Chaudhary, Jyoti Das
International Journal of Environmental Research and Public Health.2022; 19(4): 2395.     CrossRef
Detection of Rare Objects by Flow Cytometry: Imaging, Cell Sorting, and Deep Learning Approaches
Denis V. Voronin, Anastasiia A. Kozlova, Roman A. Verkhovskii, Alexey V. Ermakov, Mikhail A. Makarkin, Olga A. Inozemtseva, Daniil N. Bratashov
International Journal of Molecular Sciences.2020; 21(7): 2323.     CrossRef
The Laboratory Diagnosis of Malaria: A Focus on the Diagnostic Assays in Non-Endemic Areas
Adriana Calderaro, Giovanna Piccolo, Carlo Chezzi
International Journal of Molecular Sciences.2024; 25(2): 695.     CrossRef
Physiologically-Based Pharmacokinetics Modeling for Hydroxychloroquine as a Treatment for Malaria and Optimized Dosing Regimens for Different Populations
Jingchen Zhai, Beihong Ji, Lianjin Cai, Shuhan Liu, Yuchen Sun, Junmei Wang
Journal of Personalized Medicine.2022; 12(5): 796.     CrossRef
Refined Method for Droplet Microfluidics-Enabled Detection of Plasmodium falciparum Encoded Topoisomerase I in Blood from Malaria Patients
Marianne Hede, Patricia Okorie, Signe Fruekilde, Søren Fjelstrup, Jonas Thomsen, Oskar Franch, Cinzia Tesauro, Magnus Bugge, Mette Christiansen, Stéphane Picot, Felix Lötsch, Ghyslain Mombo-Ngoma, Johannes Mischlinger, Ayôla Adegnika, Finn Pedersen, Yi-Pi
Micromachines.2015; 6(10): 1505.     CrossRef
Fabrication of a Lab-on-Chip Device Using Material Extrusion (3D Printing) and Demonstration via Malaria-Ab ELISA
Maria Bauer, Lawrence Kulinsky
Micromachines.2018; 9(1): 27.     CrossRef
Malaria: The Past and the Present
Jasminka Talapko, Ivana Škrlec, Tamara Alebić, Melita Jukić, Aleksandar Včev
Microorganisms.2019; 7(6): 179.     CrossRef
Stringent Selection of Knobby Plasmodium falciparum-Infected Erythrocytes during Cytoadhesion at Febrile Temperature
Michael Dörpinghaus, Finn Fürstenwerth, Lisa K. Roth, Philip Bouws, Maximilian Rakotonirinalalao, Vincent Jordan, Michaela Sauer, Torben Rehn, Eva Pansegrau, Katharina Höhn, Paolo Mesén-Ramírez, Anna Bachmann, Stephan Lorenzen, Thomas Roeder, Nahla Galal
Microorganisms.2020; 8(2): 174.     CrossRef
Nerolidol: A Sesquiterpene Alcohol with Multi-Faceted Pharmacological and Biological Activities
Weng-Keong Chan, Loh Tan, Kok-Gan Chan, Learn-Han Lee, Bey-Hing Goh
Molecules.2016; 21(5): 529.     CrossRef
Metallic Nanoparticles and Core-Shell Nanosystems in the Treatment, Diagnosis, and Prevention of Parasitic Diseases
Grzegorz Król, Kamila Fortunka, Michał Majchrzak, Ewelina Piktel, Paulina Paprocka, Angelika Mańkowska, Agata Lesiak, Maciej Karasiński, Agnieszka Strzelecka, Bonita Durnaś, Robert Bucki
Pathogens.2023; 12(6): 838.     CrossRef
Review of the Current Landscape of the Potential of Nanotechnology for Future Malaria Diagnosis, Treatment, and Vaccination Strategies
Arnau Guasch-Girbau, Xavier Fernàndez-Busquets
Pharmaceutics.2021; 13(12): 2189.     CrossRef
Malaria-Infected Red Blood Cell Analysis through Optical and Biochemical Parameters Using the Transport of Intensity Equation and the Microscope’s Optical Properties
Marcel Agnero, Kouakou Konan, Zan Tokou, Yao Kossonou, Bienvenue Dion, Kenneth Kaduki, Jérémie Zoueu
Sensors.2019; 19(14): 3045.     CrossRef
A Novel Deep Learning Approach to Malaria Disease Detection on Two Malaria Datasets
İbrahim ÇETİNER, Halit ÇETİNER
Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi.2023; 10(2): 254.     CrossRef
OMNIGEN KIT ACCURACY FOR PLASMODIUM FALCIPARU
Souléye lélo, Magatte Ndiaye, Khadim Sylla, Doudou Sow, Cheikh Binetou Fall, Aida Gaye, Issac Manga, Roger Tine, Babacar Faye
GLOBAL JOURNAL FOR RESEARCH ANALYSIS.2021; : 156.     CrossRef
STUDY OF THREE MALARIA RAPID DETECTION TESTS AND ITS CORRELATION WITH PARASITIC INDEX FOR P.FALCIPARUM AND P.VIVAX
Dipti Gaikwad, Chaya A. Kumar, Sujata Baveja
INDIAN JOURNAL OF APPLIED RESEARCH.2020; : 26.     CrossRef
Tes Diagnostik Cepat Kadar Hemaglobin pada Penderita Infeksi Plasmodium di Puskesmas Doom, Sorong, Papua Barat
Merlis Simon, Junaiddin Junaiddin, Fenti A Tupanwael
Health Information : Jurnal Penelitian.2022; 14(2): 200.     CrossRef
Assessment of Fever in Returned Travelers
Hyoung-Shik Shin
Korean Journal of Medicine.2014; 86(4): 438.     CrossRef
Knowledge and practice of malaria prevention among residents of Ratuwamai Municipality, Nepal
Rajesh Karki, Niruta Bartoula, Maheshor Kaphle, Sanjaya Kumar Shah
One Health Bulletin.2023;[Epub]     CrossRef
Clinical and laboratory features associated with acute kidney injury in severe malaria
Sandeep Mahajan, Prayas Sethi, Hiren Anghan, Manish Soneja, Naveet Wig
Indian Journal of Critical Care Medicine.2018; 22(10): 718.     CrossRef
Detection of Plasmodium knowlesi in whole blood samples with sandwich enzyme-linked immunosorbent assay (ELISA) using rhoptry-associated protein 1 specific polyclonal antibodies
Wan Siti Maryam Wan Nazri, Lau Yee Ling, Cheong Fei Wen
Journal of Vector Borne Diseases.2024; 61(2): 203.     CrossRef
Comparative evaluation of three histidine-rich Protein-2 based rapid diagnostic tests, microscopy and PCR for guiding malaria treatment in Ibadan, Southwest Nigeria
AE Orimadegun, RI Funwei, OS Michael, OO Ogunkunle, JA Badejo, FI Olusola, O Agede, OE Anjorin, IO Ajayi, AS Jegede, O Ojurongbe, CO Falade
Nigerian Journal of Clinical Practice.2021; 24(4): 496.     CrossRef
Diagnostic accuracy of rapid antigen test for malaria and determinants of heavy malaria parasitaemia in children at the Nnamdi Azikiwe University Teaching Hospital, Nnewi, Nigeria
EI Nwaneli, CD I Osuorah, JC Ebenebe, N Umeadi
Nigerian Journal of Health Sciences.2017; 17(2): 59.     CrossRef
Medicinal Chemistry Approaches for the Discovery of Plasmodium Falciparum Dihydroorotate Dehydrogenase Inhibitors as Antimalarial Agents
Vivek K Vyas, Tanvi Shukla, Manmohan Sharma
Future Medicinal Chemistry.2023; 15(14): 1295.     CrossRef
Study of Disease Dynamics of Co-infection of Rotavirus and Malaria with Control Strategies
I. Ratti, P. Kalra
Malaysian Journal of Mathematical Sciences.2023; 17(2): 151.     CrossRef
Fever and Serology
Pediatric Infectious Disease.2020; 2(1): 29.     CrossRef
Imported Malaria in an Immigrant Toddler Boy in Kashan, a Non-Malaria Endemic Area, Central Iran
Tayebeh Taghipour, Mahzad Erami, Mojtaba Fakhrei, Hossein Hooshyar
Journal of Medical Microbiology and Infectious Diseases.2022; 10(3): 149.     CrossRef
KONVOLÜSYONEL SİNİR AĞI KULLANILARAK SITMA HASTALIĞI SINIFLANDIRILMASI
İbrahim ÇETİNER
Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi.2022; 9(17): 273.     CrossRef
Elevated plasma α1-antichymotrypsin is a biomarker candidate for malaria patients
Young Yil Bahk, Sang Bong Lee, Jong Bo Kim, Tong-Soo Kim, Sung-Jong Hong, Dong Min Kim, Sungkeun Lee
BMB Reports.2022; 55(11): 571.     CrossRef
Detection of Malaria Parasite Protein in Urine of Patients with Acute Uncomplicated Malaria Using Rapid Diagnostic Test Kits
Amusan ABİODUN, Akinola OLUGBENGA, Akano KAZEEM, Gbotosho Grace OLUSOLA
Journal of Microbiology and Infectious Diseases.2022; : 97.     CrossRef
Molecular characterization of sulphadoxine-pyrimethamine resistant malaria parasites among pregnant women in Anambra State, Nigeria
Okezie Godwin Isaac, Mercy Ekejindu Ifeoma, Uchenna Eleje George, Chibuzo Ibeh Christian, Amauche Ezeagwuna Dorothy, Geoffrey Okafor Chigozie, Iherue Osuji Ahaneku
Journal of Public Health and Epidemiology.2021; 13(4): 244.     CrossRef
Evaluación de la calidad del diagnóstico de malaria en la red local de laboratorios y en los laboratorios intermedios en el contexto de la eliminación de la enfermedad en Ecuador
Nohora Marcela Mendoza, César Eduardo Díaz, Yim Yan Wong, Adriana Estefanía Echeverría, Doris Grimaneza Guale, Rosa Haydeé Delgado, José Mauricio Muñoz, Luis Fernando Solórzano, Marcelo Eduardo Andrade, Rosa Alba Quintero, Belinda Regina Palacios, Saida M
Biomédica.2019; 39(Supl. 2): 101.     CrossRef
Towards the development of cost-effective point-of-care diagnostic tools for poverty-related infectious diseases in sub-Saharan Africa
Benedict Ofori, Seth Twum, Silas Nkansah Yeboah, Felix Ansah, Kwabena Amofa Nketia Sarpong
PeerJ.2024; 12: e17198.     CrossRef
Cerebral Malaria Presenting With Shock in an Adolescent: A Case Report
Deborah Omoleye, Muhammad A Israr, Faria Tazin, Camille Celeste, Olanrewaju Saheed
Cureus.2022;[Epub]     CrossRef

Abstract

Malaria is a major cause of death in tropical and sub-tropical countries, killing each year over 1 million people globally; 90% of fatalities occur in African children. Although effective ways to manage malaria now exist, the number of malaria cases is still increasing, due to several factors. In this emergency situation, prompt and effective diagnostic methods are essential for the management and control of malaria. Traditional methods for diagnosing malaria remain problematic; therefore, new technologies have been developed and introduced to overcome the limitations. This review details the currently available diagnostic methods for malaria.

INTRODUCTION

Malaria, sometimes called the "King of Diseases", is caused by protozoan parasites of the genus Plasmodium. The most serious and sometimes fatal type of malaria is caused by Plasmodium falciparum. The other human malaria species, P. vivax, P. ovale, P. malariae, and sometimes P. knowlesi can cause acute, severe illness but mortality rates are low. Malaria is the most important infectious disease in tropical and subtropical regions, and continues to be a major global health problem, with over 40% of the world's population exposed to varying degrees of malaria risk in some 100 countries. It is estimated that over 500 million people suffer from malaria infections annually, resulting in about 1-2 million deaths, of whom 90% are children in sub- Saharan Africa [1]. The number of malaria cases worldwide seems to be increasing, due to increasing transmission risk in areas where malaria control has declined, the increasing prevalence of drugresistant strains of parasites, and in a relatively few cases, massive increases in international travel and migration [2]. The need for effective and practical diagnostics for global malaria control is increasing [3], since effective diagnosis reduces both complications and mortality from malaria. Differentiation of clinical diagnoses from other tropical infections, based on patients' signs and symptoms or physicians' findings, may be difficult. Therefore, confirmatory diagnoses using laboratory technologies are urgently needed. This review discusses on the currently available diagnostic methods for malaria in many settings, and assesses their feasibility in resource-rich and resource-poor settings.

DIAGNOSIS OF MALARIA

Prompt and accurate diagnosis is critical to the effective management of malaria. The global impact of malaria has spurred interest in developing effective diagnostic strategies not only for resource-limited areas where malaria is a substantial burden on society, but also in developed countries, where malaria diagnostic expertise is often lacking [4,5]. Malaria diagnosis involves identifying malaria parasites or antigens/products in patient blood. Although this may seem simple, the diagnostic efficacy is subject to many factors. The different forms of the 5 malaria species; the different stages of erythrocytic schizogony, the endemicity of different species, the interrelation between levels of transmission, population movement, parasitemia, immunity, and signs and symptoms; drug resistance, the problems of recurrent malaria, persisting viable or non-viable parasitemia, and sequestration of the parasites in the deeper tissues, and the use of chemoprophylaxis or even presumptive treatment on the basis of clinical diagnosis, can all influence the identification and interpretation of malaria parasitemia in a diagnostic test.
Malaria is a potential medical emergency and should be treated accordingly. Delays in diagnosis and treatment are leading causes of death in many countries [6]. Diagnosis can be difficult where malaria is no longer endemic for healthcare providers unfamiliar with the disease. Clinicians may forget to consider malaria among the potential diagnoses for some patients and not order the necessary diagnostic tests. Technicians may be unfamiliar with, or lack experience with, malaria, and fail to detect parasites when examining blood smears under a microscope. In some areas, malaria transmission is so intense that a large proportion of the population is infected but remains asymptomatic, e.g., in Africa. Such carriers have developed sufficient immunity to protect them from malarial illness, but not infection. In such situations, finding malaria parasites in an ill person does not necessarily mean that the illness is caused by the parasites. In many malaria-endemic countries, the lack of resources is a major barrier to reliable and timely diagnosis. Health personnel are undertrained, underequipped, and underpaid. They often face excessive patient loads, and must divide their attention between malaria and other equally severe infectious diseases, such as tuberculosis or HIV/AIDS.

CLINICAL DIAGNOSIS OF MALARIA

A clinical diagnosis of malaria is traditional among medical doctors. This method is least expensive and most widely practiced. Clinical diagnosis is based on the patients' signs and symptoms, and on physical findings at examination. The earliest symptoms of malaria are very nonspecific and variable, and include fever, headache, weakness, myalgia, chills, dizziness, abdominal pain, diarrhea, nausea, vomiting, anorexia, and pruritus [7]. A clinical diagnosis of malaria is still challenging because of the non-specific nature of the signs and symptoms, which overlap considerably with other common, as well as potentially life-threatening diseases, e.g. common viral or bacterial infections, and other febrile illnesses. The overlapping of malaria symptoms with other tropical diseases impairs diagnostic specificity, which can promote the indiscriminate use of antimalarials and compromise the quality of care for patients with non-malarial fevers in endemic areas [8-10]. The Integrated Management of Children Illness (IMCI) has provided clinical algorithms for managing and diagnosing common childhood illnesses by minimally trained healthcare providers in the developing world having inappropriate equipment for laboratory diagnosis. A widely utilized clinical algorithm for malaria diagnosis, compared with a fully trained pediatrician with access to laboratory support, showed very low specificity (0-9%) but 100% sensitivity in African settings [11, 12]. This lack of specificity reveals the perils of distinguishing malaria from other causes of fever in children on clinical grounds alone. Recently, another study showed that use of the IMCI clinical algorithm resulted in 30% over-diagnosis of malaria [13]. Therefore, the accuracy of malaria diagnosis can be greatly enhanced by combining clinical-and parasite-based findings [14].

LABORATORY DIAGNOSIS OF MALARIA

Rapid and effective malaria diagnosis not only alleviates suffering, but also decreases community transmission. The nonspecific nature of the clinical signs and symptoms of malaria may result in over-treatment of malaria or non-treatment of other diseases in malaria-endemic areas, and misdiagnosis in non-endemic areas [15]. In the laboratory, malaria is diagnosed using different techniques, e.g. conventional microscopic diagnosis by staining thin and thick peripheral blood smears [16], other concentration techniques, e.g. quantitative buffy coat (QBC) method [15], rapid diagnostic tests e.g., OptiMAL [17,18], ICT [19], Para-HIT-f [10], ParaScreen [20], SD Bioline [21], Paracheck [22], and molecular diagnostic methods, such as polymerase chain reaction (PCR) [23,24]. Some advantages and shortcomings of these methods have also been described, related to sensitivity, specificity, accuracy, precision, time consumed, cost-effectiveness, labor intensiveness, the need for skilled microscopists, and the problem of inexperienced technicians.

Microscopic diagnosis using stained thin and thick peripheral blood smears (PBS)

Malaria is conventionally diagnosed by microscopic examination of stained blood films using Giemsa, Wright's, or Field's stains [25]. This method has changed very little since Laverran's original discovery of the malaria parasite, and improvements in staining techniques by Romanowsky in the late 1,800s. More than a century later, microscopic detection and identification of Plasmodium species in Giemsa-stained thick blood films (for screening the presenting malaria parasite), and thin blood films (for species' confirmation) remains the gold standard for laboratory diagnosis [26]. Malaria is diagnosed microscopically by staining thick and thin blood films on a glass slide, to visualize malaria parasites. Briefly, the patient's finger is cleaned with 70% ethyl alcohol, allowed to dry and then the side of fingertip is picked with a sharp sterile lancet and two drops of blood are placed on a glass slide. To prepare a thick blood film, a blood spot is stirred in a circular motion with the corner of the slide, taking care not make the preparation too thick, and allowed to dry without fixative. After drying, the spot is stained with diluted Giemsa (1 : 20, vol/vol) for 20 min, and washed by placing the film in buffered water for 3 min. The slide is allowed to air-dry in a vertical position and examination using a light microscope. As they are unfixed, the red cells lyse when a water-based stain is applied. A thin blood film is prepared by immediately placing the smooth edge of a spreader slide in a drop of blood, adjusting the angle between slide and spreader to 45° and then smearing the blood with a swift and steady sweep along the surface. The film is then allowed to air-dry and is fixed with absolute methanol. After drying, the sample is stained with diluted Giemsa (1 : 20, vol/vol) for 20 min and washed by briefly dipping the slide in and out of a jar of buffered water (excessive washing will decolorize the film). The slide is then allowed to air-dry in a vertical position and examined under a light microscope [27]. The wide acceptance of this technique by laboratories all around the world can be attributed to its simplicity, low cost, its ability to identify the presence of parasites, the infecting species, and assess parasite density-all parameters useful for the management of malaria. Recently, a study showed that conventional malaria microscopic diagnosis at primary healthcare facilities in Tanzania could reduce the prescription of antimalarial drugs, and also appeared to improve the appropriate management of non-malarial fevers [16]. However, the staining and interpretation processes are labor intensive, time consuming, and require considerable expertise and trained healthcare workers, particularly for identifying species accurately at low parasitemia or in mixed malarial infections. The most important shortcoming of microscopic examination is its relatively low sensitivity, particularly at low parasite levels. Although the expert microscopist can detect up to 5 parasites/µl, the average microscopist detects only 50-100 parasites/µl [28]. This has probably resulted in underestimating malaria infection rates, especially cases with low parasitemia and asymptomatic malaria. The ability to maintain required levels of in malaria diagnostics expertise is problematic, especially in remote medical centers in countries where the disease is rarely seen [29]. Microscopy is laborious and ill-suited for high-throughput use, and species determination at low parasite density is still challenging. Therefore, in remote rural settings, e.g. peripheral medical clinics with no electricity and no health-facility resources, microscopy is often unavailable [30].

QBC technique

The QBC technique was designed to enhance microscopic detection of parasites and simplify malaria diagnosis [31]. This method involves staining parasite deoxyribonucleic acid (DNA) in micro-hematocrit tubes with fluorescent dyes, e.g. acridine orange, and its subsequent detection by epi-fluorescent microscopy. Briefly, finger-prick blood is collected in a hematocrit tube containing acridine orange and anticoagulant. The tube is centrifuged at 12,000 g for 5 min and immediately examined using an epi-fluorescent microscope [27]. Parasite nuclei fluoresces bright green, while cytoplasm appears yellow-orange. The QBC technique has been shown to be a rapid and sensitive test for diagnosing malaria in numerous laboratories settings [15,32-35]. While it enhances sensitivity for P. falciparum, it reduces sensitivity for non-falciparum species and decreases specificity due to staining of leukocyte DNA [36]. Recently, it has been shown that acridine orange is the preferred diagnostic method (over light microscopy and immunochromatographic tests) in the context of epidemiologic studies in asymptomatic populations in endemic areas, probably because of increased sensitivity at low parasitemia [37]. Nowadays, portable fluorescent microscopes using light emitting diode (LED) technology, and pre-prepared glass slides with fluorescent reagent to label parasites, are available commercially [38]. Although the QBC technique is simple, reliable, and user-friendly, it requires specialized instrumentation, is more costly than conventional light microscopy, and is poor at determining species and numbers of parasites.

Rapid diagnostic tests (RDTs)

Since the World Health Organization (WHO) recognized the urgent need for new, simple, quick, accurate, and cost-effective diagnostic tests for determining the presence of malaria parasites, to overcome the deficiencies of light microscopy, numerous new malaria-diagnostic techniques have been developed [39]. This, in turn, has led to an increase in the use of RDTs for malaria, which are fast and easy to perform, and do not require electricity or specific equipment [40]. Currently, 86 malaria RDTs are available from 28 different manufacturers [41]. Unlike conventional microscopic diagnosis by staining thin and thick peripheral blood smears, and QBC technique, RDTs are all based on the same principle and detect malaria antigen in blood flowing along a membrane containing specific anti-malaria antibodies; they do not require laboratory equipment. Most products target a P. falciparum-specific protein, e.g. histidine-rich protein II (HRP-II) or lactate dehydrogenase (LDH). Some tests detect P. falciparum specific and pan-specific antigens (aldolase or pan-malaria pLDH), and distinguish non-P. falciparum infections from mixed malaria infections. Although most RDT products are suitable for P. falciparum malaria diagnosis, some also claim that they can effectively and rapidly diagnose P. vivax malaria [21,42,43]. Recently, a new RDT method has been developed for detecting P. knowlesi [44]. RDTs provide an opportunity to extend the benefits of parasite-based diagnosis of malaria beyond the confines of light microscopy, with potentially significant advantages in the management of febrile illnesses in remote malaria-endemic areas. RDT performance for diagnosis of malaria has been reported as excellent [14,19,20,22,45-47]; however, some reports from remote malaria-endemic areas have shown wide variations in sensitivity [36,40,48]. Murray and co-authors recently discussed the reliability of RDTs in an "update on rapid diagnostic testing for malaria" in their excellent paper [49]. Overall, RDTs appears a highly valuable, rapid malaria-diagnostic tool for healthcare workers; however it must currently be used in conjunction with other methods to confirm the results, characterize infection, and monitor treatment. In malaria-endemic areas where no light microscopy facility exists that may benefit from RDTs, improvements are required for ease of use, sensitivity for non-falciparum infection, stability, and affordability. The WHO is now developing guidelines to ensure lot-to-lot quality control, which is essential for the community's confidence in this new diagnostic tool [41]. Because the simplicity and reliability of RDTs have been improved for use in rural endemic areas, RDT diagnosis in non-endemic regions is becoming more feasible, which may reduce time-to-treatment for cases of imported malaria [30].

Serological tests

Diagnosis of malaria using serological methods is usually based on the detection of antibodies against asexual blood stage malaria parasites. Immunofluorescence antibody testing (IFA) has been a reliable serologic test for malaria in recent decades [50]. Although IFA is time-consuming and subjective, it is highly sensitive and specific [51]. The literature clearly illustrates the reliability of IFA, so that it was usually regarded as the gold standard for malarial serology testing [47]. IFA is useful in epidemiological surveys, for screening potential blood donors, and occasionally for providing evidence of recent infection in non-immunes. Until recently, it was a validated method for detecting Plasmodium-specific antibodies in various blood bank units, which was useful for screening prospective blood donors, so avoiding transfusion-transmitted malaria [52,53]. In France, for example, IFA is used as a part of a targeted screening strategy, combined with a donor questionnaire [54]. The principle of IFA is that, following infection with any Plasmodium species, specific antibodies are produced within 2 wk of initial infection, and persist for 3-6 months after parasite clearance. IFA uses specific antigen or crude antigen prepared on a slide, coated and kept at -30℃ until used, and quantifies both IgG and IgM antibodies in patient serum samples. Titers > 1 : 20 are usually deemed positive, and < 1 : 20 unconfirmed. Titers > 1 : 200 can be classified as recent infections [27]. In conclusion, IFA is simple and sensitive, but time-consuming. It cannot be automated, which limits the number of sera that can be studied daily. It also requires fluorescence microscopy and trained technicians; readings can be influenced by the level of training of the technician, particularly for serum samples with low antibody titers. Moreover, the lack of IFA reagent standardization makes it impractical for routine use in blood-transfusion centers, and for harmonizing inter-laboratory results.

MOLECULAR DIAGNOSTIC METHODS

As mentioned above, traditional malaria diagnostic methods remain problematic. New laboratory diagnostic techniques that display high sensitivity and high specificity, without subjective variation, are urgently needed in various laboratories. Recent developments in molecular biological technologies, e.g. PCR, loop-mediated isothermal amplification (LAMP), microarray, mass spectrometry (MS), and flow cytometric (FCM) assay techniques, have permitted extensive characterization of the malaria parasite and are generating new strategies for malaria diagnosis.

PCR technique

PCR-based techniques are a recent development in the molecular diagnosis of malaria, and have proven to be one of the most specific and sensitive diagnostic methods, particularly for malaria cases with low parasitemia or mixed infection [55]. The PCR technique continues to be used extensively to confirm malaria infection, follow-up therapeutic response, and identify drug resistance [27]. It was found to be more sensitive than QBC and some RDTs [56,57]. Concerning with the gold standard method for malaria diagnosis, PCR has shown higher sensitivity and specificity than conventional microscopic examination of stained peripheral blood smears, and now seems the best method for malaria diagnosis [55]. PCR can detect as few as 1-5 parasites/µl of blood (≤ 0.0001% of infected red blood cells) compared with around 50-100 parasites/µl of blood by microscopy or RDT. Moreover, PCR can help detect drug-resistant parasites, mixed infections, and may be automated to process large numbers of samples [58,59]. Some modified PCR methods are proving reliable, e.g., nested PCR, real-time PCR, and reverse transcription PCR, and appear to be useful second-line techniques when the 96 Korean J Parasitol. Vol. 47, No. 2: 93-102, June 2009 results of traditional diagnostic methods are unclear for patients presenting with signs and symptoms of malaria; they also allow accurate species determination [58,60-62]. Recently, the PCR method has become widely accepted for identifying P. knowlesi infections [63-65]. Although PCR appears to have overcome the two major problems of malaria diagnosis-sensitivity and specificity- the utility of PCR is limited by complex methodologies, high cost, and the need for specially trained technicians. PCR, therefore, is not routinely implemented in developing countries because of the complexity of the testing and the lack of resources to perform these tests adequately and routinely [66]. Quality control and equipment maintenance are also essential for the PCR technique, so that it may not be suitable for malaria diagnosis in remote rural areas or even in routine clinical diagnostic settings [67].

LAMP technique

The LAMP technique is claimed to be a simple and inexpensive molecular malaria-diagnostic test that detects the conserved 18S ribosome RNA gene of P. falciparum [68]. Other studies have shown high sensitivity and specificity, not only for P. falciparum, but also P. vivax, P. ovale and P. malariae [69,70]. These observations suggest that LAMP is more reliable and useful for routine screening for malaria parasites in regions where vector-borne diseases, such as malaria, are endemic. LAMP appears to be easy, sensitive, quick and lower in cost than PCR. However, reagents require cold storage, and further clinical trials are needed to validate the feasibility and clinical utility of LAMP [30].

Microarrays

Publication of the Plasmodium genome offers many malaria-diagnostic opportunities [71,72]. Microarrays may play an important role in the future diagnosis of infectious diseases [73]. The principle of the microarrays technique parallels traditional Southern hybridization. Hybridization of labeled targets divided from nucleic acids in the test sample to probes on the array enables the probing of multiple gene targets in a single experiment. Ideally, this technique would be miniaturized and automated for point-of-care diagnostics [23]. A pan-microbial oligonucleotide microarray has been developed for infectious disease diagnosis and has identified P. falciparum accurately in clinical specimens [74]. This diagnostic technique, however, is still in the early stages of development [30].

FCM assay

Flow cytometry has reportedly been used for malaria diagnosis [75-77]. Briefly, the principle of this technique is based on detection of hemozoin, which is produced when the intra-erythrocytic malaria parasites digest host hemoglobin and crystallize the released toxic heme into hemozoin in the acidic food vacuole. Hemozoin within phagocytotes can be detected by depolarization of laser light, as cells pass through a flow-cytometer channel. This method may provide a sensitivity of 49-98%, and a specificity of 82-97%, for malarial diagnosis [78,79], and is potentially useful for diagnosing clinically unsuspected malaria. The disadvantages are its labor intensiveness, the need for trained technicians, costly diagnostic equipment, and that false-positives may occur with other bacterial or viral infections. Therefore, this method should be considered a screening tool for malaria.

Automated blood cell counters (ACC)

An ACC is a practical tool for malaria diagnosis [80], with 3 reported approaches. The first used a Cell-Dyn® 3500 apparatus to detect malaria pigment (hemozoin) in monocytes, and showed a sensitivity of 95% and specificity of 88%, compared with the gold-standard blood smear [81]. The second method also used a Cell-Dyn® 3500, and analyzed depolarized laser light (DLL) to detect malaria infection, with an overall sensitivity of 72% and specificity of 96% [82]. The third technique used a Beckman Coulter ACC to detect increases in activated monocytes by volume, conductivity, and scatter (VCS), with 98% sensitivity and 94% specificity [83]. Although promising, none of the 3 techniques is routinely available in the clinical laboratory; further studies are required to improve and validate the instrument and its software. The accuracy these methods promise, for detecting malaria parasites, mean ACC could become a valuable and routine malaria-diagnostic laboratory method.

Mass spectrophotometry

A novel method for in vitro detection of malaria parasites, with a sensitivity of 10 parasites/µl of blood, has been reported recently. It comprises a protocol for cleanup of whole blood samples, followed by direct ultraviolet laser desorption mass spectrometry (LDMS). For malaria diagnosis, the principle of LDMS is to identify a specific biomarker in clinical samples. In malaria, heme from hemozoin is the parasite-specific biomarker of interest. LDMS is rapid, high throughput, and automated. Compared with the microscopic method, which requires a skilled microscopist and up to 30-60 min to examine each peripheral blood smear, LDMS can analyze a sample in < 1 min [84]. However, the remote rural areas without electricity are inhospitable for existing high-tech mass spectrometers. Future improvements in equipment and techniques should make this method more practicable.
Recently, other reliable malaria-diagnostic tests have been developed and introduced, and some tests are commercially available, for example, enzyme linked immunosorbent assay (ELISA)/enzyme immunoassay (EIA) [50,54,85], latex agglutination assay [86], and cultivation of live malaria parasites [87,88]. Post-mortem organ diagnoses, by investigating malaria parasites in tissue autopsy, e.g. liver and spleen [89], kidney [90] and brain [91], have also been described. However, parasite culture, molecular techniques, serology techniques and pathobiological diagnostic techniques, although sometimes useful in research laboratories, are not practical or appropriate for the routine clinical diagnosis of malaria. Table 1 summarizes of modalities and issues for consideration in malaria diagnosis.

CONCLUSION

Conventional microscopic examination of peripheral thick and thin blood smears remains the gold standard for malaria diagnosis. Although this method requires a trained microscopist, and sensitivity and specificity vary compared with recent technical advances, it is inexpensive and reliable. Quick and convenient RDTs are currently implemented in many remote settings, but are costly and need improved quality control. Serological tests are useful for epidemiological surveys, but not suitable for the diagnosis of acute malaria. Molecular-biological techniques are appropriate for research laboratories; they can be used to identify the development of drug-resistance, are useful for species identification, and also for quantifying parasite density with low parasitemia. Finally, the level of malaria endemicity, the urgency of diagnosis, the experience of the physician, the effectiveness of healthcare workers, and budget resources, are all factors influencing the choice of malaria-diagnostic method.

ACKNOWLEDGEMENTS

The authors thank Dr. Kevin C. Kain, of the McLaughlin Center for Molecular Medicine, University of Toronto, Canada, and Dr. Yaowalark Sukthana, Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, for their advice. Thanks to Mr. Paul Adams for editing the English language.

Conflict of interest

The authors declare no conflict of interest.

REFERENCES

1. Curing malaria together. MMV website. Accessed October 16, 2008. Available at: http://www.mmv.org

2. Pasvol G. Management of severe malaria: interventions and controversies. Infect Dis Clin North Am. 2005. 19:211-240. PMID: 15701555.
crossref pmid
3. World Health Organization. Guidelines for the treatment of malaria. 2006. 1st ed. Geneva, Switzerland: WHO; 133-143.

4. Bell DR, Jorgensen P, Christophel EM, Palmer KL. Malaria risk: estimation of the malaria burden. Nature. 2005. 437:E3-E4. PMID: 16148887.
crossref
5. Reyburn H, Mbakilwa H, Mwangi R, Mwerinde O, Olomi R, Drakeley C, Whitty CJ. Rapid diagnostic tests compared with malaria microscopy for guiding outpatient treatment of febrile illness in Tanzania: randomised trial. BMJ. 2007. 334:403. PMID: 17259188.
crossref
6. Malaria Facts. CDC website. Accessed October 10, 2008. Available at: http://www.cdc.gov/malaria/facts.htm

7. Looareesuwan S. In Looareesuwan S, Wilairatana P eds, Malaria. Clinical Tropical Medicine. 1999. 1st ed. Bangkok, Thailand: Medical Media; 5-10.

8. Mwangi TW, Mohammed M, Dayo H, Snow RW, Marsh K. Clinical algorithms for malaria diagnosis lack utility among people of different age groups. Trop Med Int Health. 2005. 10:530-536. PMID: 15941415.
crossref pmid pmc
9. Reyburn H, Mbatia R, Drakeley C, Carneiro I, Mwakasungula E, Mwerinde O, Saganda K, Shao J, Kitua A, Olomi R, Greenwood BM, Whitty CJ. Overdiagnosis of malaria in patients with severe febrile illness in Tanzania: a prospective study. BMJ. 2004. 329:1212. PMID: 15542534.
crossref
10. McMorrow ML, Masanja MI, Abdulla SM, Kahigwa E, Kachur SP. Challenges in routine implementation and quality control of rapid diagnostic tests for malaria-Rufiji District, Tanzania. Am J Trop Med Hyg. 2008. 79:385-390. PMID: 18784230.
pmid
11. Perkins BA, Zucker JR, Otieno J, Jafari HS, Paxton L, Redd SC, Nahlen BL, Schwartz B, Oloo AJ, Olargo C, Gove S, Campbell CC. Evaluation of an algorithm for integrated management of childhood illness in an area of Kenya with high malaria transmission. Bull World Health Organ. 1997. 75:33-42. PMID: 9529716.

12. Weber MW, Mulholland EK, Jaffar S, Troedsson H, Gove S, Greenwood BM. Evaluation of an algorithm for the integrated management of childhood illness in an area with seasonal malaria in the Gambia. Bull World Health Organ. 1997. 75:25-32. PMID: 9529715.

13. Tarimo DS, Minjas JN, Bygbjerg IC. Malaria diagnosis and treatment under the strategy of the integrated management of children illness (IMCI): relevance of laboratory support from the rapid immunochromatographic tests of ICT malaria P.f/P.v and OptiMAL. Ann Trop Med Parasitol. 2001. 95:437-444. PMID: 11487366.
crossref pmid
14. Kyabayinze DJ, Tibenderana JK, Odong GW, Rwakimari JB, Counihan H. Operational accuracy and comparative persistent antigenicity of HRP2 rapid diagnostic tests for Plasmodium falciparum malaria in a hyperendemic region of Uganda. Malar J. 2008. 7:221. PMID: 18959777.
crossref pmid pmc
15. Bhandari PL, Raghuveer CV, Rajeev A, Bhandari PD. Comparative study of peripheral blood smear, quantitative buffy coat and modified centrifuged blood smear in malaria diagnosis. Indian J Pathol Microbiol. 2008. 51:108-112. PMID: 18417878.
crossref
16. Ngasala B, Mubi M, Warsame M, Petzold MG, Massele AY, Gustafsson LL, Tomson G, Premji Z, Bjorkman A. Impact of training in clinical and microscopy diagnosis of childhood malaria on anti-malarial drug prescription and health outcome at primary health care level in Tanzania: a randomized controlled trial. Malar J. 2008. 7:199. PMID: 18831737.
crossref pmid pmc
17. Tagbor H, Bruce J, Browne E, Greenwood B, Chandramohan D. Performance of the OptiMAL dipstick in the diagnosis of malaria infection in pregnancy. Ther Clin Risk Manag. 2008. 4:631-636. PMID: 18827859.
pmid pmc
18. Zerpa N, Pabón R, Wide A, Gavidia M, Medina M, Cáceres JL, Capaldo J, Baker M, Noya O. Evaluation of the OptiMAL test for diagnosis of malaria in Venezuela. Invest Clin. 2008. 49:93-101. PMID: 18524335.
pmid
19. Ratsimbasoa A, Fanazava L, Radrianjafy R, Ramilijaona J, Rafanomezantsoa H, Ménard D. Evaluation of two new immunochromatographic assays for diagnosis of malaria. Am J Trop Med Hyg. 2008. 79:670-672. PMID: 18981501.
pmid
20. Endeshaw T, Gebre T, Ngondi J, Graves PM, Shargie EB, Ejigsemahu Y, Ayele B, Yohannes G, Teferi T, Messele A, Zerihun M, Genet A, Mosher AW, Emerson PM, Richards FO. Evaluation of light microscopy and rapid diagnostic test for the detection of malaria under operational field conditions: a household survey in Ethiopia. Malar J. 2008. 7:118. PMID: 18598344.
crossref pmid pmc
21. Lee SW, Jeon K, Jeon BR, Park I. Rapid diagnosis of vivax malaria by the SD Bioline Malaria Antigen test when thrombocytopenia is present. J Clin Microbiol. 2008. 46:939-942. PMID: 18160449.
crossref pmid pmc
22. Harvey SA, Jennings L, Chinyama M, Masaninga F, Mulholland K, Bell DR. Improving community health worker use of malaria rapid diagnostic tests in Zambia: package instructions, job aid and job aid-plus-training. Malar J. 2008. 7:160. PMID: 18718028.
crossref pmid pmc
23. Holland CA, Kiechle FL. Point-of-care molecular diagnostic systems-past, present and future. Curr Opin Microbiol. 2005. 8:504-509. PMID: 16098787.
crossref pmid
24. Vo TK, Bigot P, Gazin P, Sinou V, De Pina JJ, Huynh DC, Fumoux F, Parzy D. Evaluation of a real-time PCR assay for malaria diagnosis in patients from Vietnam and in returned travelers. Trans R Soc Trop Med. 2007. 101:422-428.
crossref pmid
25. Warhurst DC, Williams JE. Laboratory diagnosis of malaria. J Clin Pathol. 1996. 49:533-538. PMID: 8813948.
crossref
26. Bharti AR, Patra KP, Chuquiyauri R, Kosek M, Gilman RH, Llanos-Cuentas A, Vinetz JM. Polymerase chain reaction detection of Plasmodium vivax and Plasmodium falciparum DNA from stored serum samples: implications for retrospective diagnosis of malaria. Am J Trop Med Hyg. 2007. 77:444-446. PMID: 17827357.
pmid
27. Chotivanich K, Silamut K, Day NPJ. Laboratory diagnosis of malaria infection-a short review of methods. Aust J Med Sci. 2006. 27:11-15.

28. Payne D. Use and limitations of light microscopy for diagnosing malaria at the primary health care level. Bull World Health Organ. 1988. 66:621-628. PMID: 2463112.
pmid pmc
29. Ohrt C, Purnomo , Sutamihardia MA, Tang D, Kain KC. Impact of microscopy error on estimates of protective efficacy in malaria prevention trials. J Infect Dis. 2002. 186:540-546. PMID: 12195382.
crossref pmid
30. Erdman LK, Kain KC. Molecular diagnostic and surveillance tools for global malaria control. Travel Med Infect Dis. 2008. 6:82-99. PMID: 18342279.
crossref
31. Clendennen TE 3rd, Long GW, Baird KJ. QBC and Giemsa stained thick blood films: diagnostic performance of laboratory technologists. Trans R Soc Trop Med Hyg. 1995. 89:183-184. PMID: 7539953.
crossref
32. Pornsilapatip J, Namsiripongpun V, Wilde H, Hanvanich M, Chutivongse S. Detection of Plasmodia in acridine orange stained capillary tubes (the QBC system). Southeast Asian J Trop Med Public Health. 1990. 21:534-540. PMID: 2098913.
pmid
33. Salako LA, Akinyanju O, Afolabi BM. Comparison of the standard Giemsa-stained thick blood smear with the Quantitative Buffy Coat Technique in malaria diagnosis in Nigeria. Niger Q J Hosp Med. 1999. 9:256-269.

34. Barman D, Mirdha BR, Samantray JC, Kironde F, Kabra SK, Guleria R. Evaluation of quantitative buffy coat (QBC) assay and polymerase chain reaction (PCR) for diagnosis of malaria. J Commun Dis. 2003. 35:170-181. PMID: 15796409.
pmid
35. Adeoye GO, Nga IC. Comparison of Quantitative Buffy Coat technique (QBC) with Giemsa-stained Thick Film (GTF) for diagnosis of malaria. Parasitol Int. 2007. 56:308-312. PMID: 17683979.
crossref pmid
36. Moody A. Rapid diagnostic tests for malaria parasites. Clin Microbiol Rev. 2002. 15:66-78. PMID: 11781267.
crossref pmid pmc
37. Ochola LB, Vounatsou P, Smith T, Mabaso ML, Newton CR. The reliability of diagnostic techniques in diagnosis and management of malaria in absence of a gold standard. Lancet Infect Dis. 2006. 6:582-588. PMID: 16931409.
crossref pmid
38. Partec reagents and accessories. Cytec website. Accessed November 10, 2008. Available at: http://www.partec.com/preview/cms/front_content.php?idcat=119&idart=201&highlight=malaria+diagnosis

39. World Health Organization. WHO information consultation on recent advances in diagnostic techniques and vaccines for malaria: a rapid dipstick antigen capture assay for the diagnosis of falciparum malaria. Bull World Health Organ. 1996. 74:47-54. PMID: 8653815.

40. Bell D, Wongsrichanalai C, Barnwell JW. Ensuring quality and access for malaria diagnosis: how can it be achieved? Nat Rev Microbiol. 2006. 4:S7-S20. PMID: 17003770.
crossref
41. List of known commercially available antigen-detecting malaria RDTs. World Health Organization. Accessed November 12, 2008. Available at: http://www.wpro.who.int/sites/rdt

42. Park TS, Kim JH, Kang CI, Lee BH, Jeon BR, Lee SM, Chang CL, Lee EY, Son HC, Kim HH. Diagnostic usefulness of SD malaria antigen and antibody kits for differential diagnosis of vivax Malaria in patients with fever of unknown origin. Korean J Lab Med. 2006. 26:241-245. PMID: 18156732.
crossref pmid
43. Kim SH, Nam MH, Roh KH, Park HC, Nam DH, Park GH, Han ET, Klein TA, Lim CS. Evaluation of a rapid diagnostic test specific for Plasmodium vivax. Trop Med Int Health. 2008. 13:1495-1500. PMID: 18983278.
crossref pmid
44. McCutchan TF, Piper RC, Makler MT. Use of malaria rapid diagnostic test to identify Plasmodium knowlesi infection. Emerg Infect Dis. 2008. 14:1750-1752. PMID: 18976561.
crossref pmid pmc
45. Chilton D, Malik AN, Armstrong M, Kettelhut M, Parker-Williams J, Chiodini PL. Use of rapid diagnostic tests for diagnosis of malaria in the UK. J Clin Pathol. 2006. 59:862-866. PMID: 16603648.
crossref pmid pmc
46. Noedl H, Yingyuen K, Laoboonchai A, Fukuda M, Sirichaisinthop J, Miller RS. Sensitivity and specificity of an antigen detection ELISA for malaria diagnosis. Am J Trop Med Hyg. 2006. 75:1205-1208. PMID: 17172394.
pmid
47. Doderer C, Heschung A, Guntz P, Cazenave JP, Hansmann Y, Senegas A, Pfaff AW, Abdelrahman T, Candolfi E. A new ELISA kit which uses a combination of Plasmodium falciparum extract and recombinant Plasmodium vivax antigens as an alternative to IFAT for detection of malaria antibodies. Malar J. 2007. 6:19. PMID: 17313669.
crossref pmid pmc
48. Murray CK, Bell D, Gasser RA, Wongsrichanalai C. Rapid diagnostic testing for malaria. Trop Med Int Health. 2003. 8:876-883. PMID: 14516298.
crossref pmid
49. Murray CK, Gasser RA Jr, Magill AJ, Miller RS. Update on rapid diagnostic testing for malaria. Clin Microbiol Rev. 2008. 21:97-110. PMID: 18202438.
crossref pmid pmc
50. She RC, Rawlins ML, Mohl R, Perkins SL, Hill HR, Litwin CM. Comparison of immunofluorescence antibody testing and two enzyme immunoassays in the serologic diagnosis of malaria. J Travel Med. 2007. 14:105-111. PMID: 17367480.
crossref
51. Sulzer AJ, Wilson M, Hall EC. Indirect fluorescent-antibody tests for parasitic diseases. An evaluation of a thick-smear antigen in the IFA test for malaria antibodies. Am J Trop Med Hyg. 1969. 18:199-205. PMID: 4888028.
pmid
52. Reesing HW. European strategies against the parasite transfusion risk. Transfus Clin Biol. 2005. 12:1-4. PMID: 15814284.
crossref pmid
53. Mungai M, Tegtmeier G, Chamberland M, Parise M. Transfusion-transmitted malaria in the United States from 1963 through 1999. N Engl J Med. 2001. 344:1973-1978. PMID: 11430326.
crossref
54. Oh JS, Kim JS, Lee CH, Nam DH, Kim SH, Park DW, Lee CK, Lim CS, Park GH. Evaluation of a malaria antibody enzyme immunoassay for use in blood screening. Mem Inst Oswaldo Cruz. 2008. 103:75-78. PMID: 18345458.
crossref pmid
55. Morassin B, Fabre R, Berry A, Magnaval JF. One year's experience with the polymerase chain reaction as a routine method for the diagnosis of imported malaria. Am J Trop Med Hyg. 2002. 66:503-508. PMID: 12201583.
pmid
56. Makler MT, Palmer CJ, Ager AL. A review of practical techniques for the diagnosis of malaria. Ann Trop Med Parasitol. 1998. 92:419-433. PMID: 9683894.
crossref pmid
57. Rakotonirina H, Barnadas C, Raherijafy R, Andrianantenaina H, Ratsimbasoa A, Randrianasolo L, Jahevitra M, Andriantsoanirina V, Ménard D. Accuracy and reliability of malaria diagnostic techniques for guiding febrile outpatient treatment in malaria-endemic countries. Am J Trop Med Hyg. 2008. 78:217-221. PMID: 18256418.
pmid
58. Swan H, Sloan L, Muyombwe A, Chavalitshewinkoon-Petmitr P, Krudsood S, Leowattana W, Wilairatana P, Looareesuwan S, Rosenblatt J. Evaluation of a real-time polymerase chain reaction assay for the diagnosis of malaria in patients from Thailand. Am J Trop Med Hyg. 2005. 73:850-854. PMID: 16282292.
pmid
59. Hawkes M, Kain KC. Advance in malaria diagnosis. Expert Rev Anti Infect Ther. 2007. 5:1-11. PMID: 17266447.
crossref
60. Imwong M, Pukrittayakamee S, Pongtavornpinyo W, Nakeesathit S, Nair S, Newton P, Nosten F, Anderson TJ, Dondorp A, Day NP, White NJ. Gene amplification of the multidrug resistance 1 gene of Plasmodium vivax isolates from Thailand, Laos, and Myanmar. Antimicrob Agents Chemother. 2008. 52:2657-2659. PMID: 18443118.
crossref pmid pmc
61. Mens PF, Schoone GJ, Kager PA, Schallig HD. Detection and identification of human Plasmodium species with real time quantitative nucleic acid sequence based amplification. Malar J. 2006. 5:80. PMID: 17018138.
crossref pmid pmc
62. Mlambo G, Vasquez Y, LeBlanc R, Sullivan D, Kumar N. A filter paper method for the detection of Plasmodium falciparum gametocytes by reverse transcription polymerase chain reaction. Am J Trop Med Hyg. 2008. 78:114-116. PMID: 18187793.
pmid
63. Cox-Singh J, Davis TM, Lee KS, Shamsul SS, Matusop A, Ratnam S, Rahman HA, Conway DJ, Singh B. Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clin Infect Dis. 2008. 46:165-171. PMID: 18171245.
crossref pmid pmc
64. Luchavez J, Espino F, Curameng P, Espina R, Bell D, Chiodini P, Nolder D, Sutherland C, Lee KS, Singh B. Human infections with Plasmodium knowlesi, the Philippines. Emerg Infect Dis. 2008. 14:811-813. PMID: 18439369.
crossref pmid pmc
65. Ng OT, Ooi EE, Lee CC, Lee PJ, Ng LC, Pei SW, Tu TM, Loh JP, Leo YS. Naturally acquired human Plasmodium knowlesi infection, Singapore. Emerg Infect Dis. 2008. 14:814-816. PMID: 18439370.
crossref pmid pmc
66. Mens PF, van Amerongen A, Sawa P, Kager PA, Schallig HD. Molecular diagnosis of malaria in the field: development of a novel 1-step nucleic acid lateral flow immunoassay for the detection of all 4 human Plasmodium spp. and its evaluation in Mbita, Kenya. Diagn Microbiol Infect Dis. 2008. 61:421-427. PMID: 18455349.
crossref pmid
67. Hanscheid T, Grobusch MP. How useful is PCR in the diagnosis of malaria? Trends Parasitol. 2002. 18:395-398. PMID: 12377256.
crossref pmid
68. Poon LL, Wong BW, Ma EH, Chan KH, Chow LM, Abeyewickreme W, Tangpukdee N, Yuen KY, Guan Y, Looareesuwan S, Peiris JS. Sensitive and inexpensive molecular test for falciparum malaria: detecting Plasmodium falciparum DNA directly from heat-treated blood by loop-mediated isothermal amplification. Clin Chem. 2006. 52:303-306. PMID: 16339303.
crossref pmid
69. Han ET, Watanabe R, Sattabongkot J, Khuntirat B, Sirichaisinthop J, Iriko H, Jin L, Takeo S, Tsuboi T. Detection of four Plasmodium species by genus- and species-specific loop-mediated isothermal amplification for clinical diagnosis. J Clin Microbiol. 2007. 45:2521-2528. PMID: 17567794.
crossref pmid pmc
70. Aonuma H, Suzuki M, Iseki H, Perera N, Nelson B, Igarashi I, Yagi T, Kanuka H, Fukumoto S. Rapid identification of Plasmodium-carrying mosquitoes using loop-mediated isothermal amplification. Biochem Biophys Res Commun. 2008. 376:671-676. PMID: 18809384.
crossref
71. Crameri A, Marfurt J, Mugittu K, Maire N, Regos A, Coppee JY, Sismeiro O, Burki R, Huber E, Laubscher D, Puijalon O, Genton B, Felger I, Beck HP. Rapid microarray-based method for monitoring of all currently known single-nucleotide polymorphisms associated with parasite resistance to antimalaria drugs. J Clin Microbiol. 2007. 45:3685-3691. PMID: 17804664.
crossref pmid pmc
72. Doolan DL, Mu Y, Unal B, Sundaresh S, Hirst S, Valdez C, Randall A, Molina D, Liang X, Freilich DA, Oloo JA, Blair PL, Aguiar JC, Baldi P, Davies DH, Felgner PL. Profiling humoral immune responses to P. falciparum infection with protein microarrays. Proteomics. 2008. 8:4680-4694. PMID: 18937256.
crossref pmid pmc
73. Patarakul K. Role of DNA microarray in infectious diseases. Chula Med J. 2008. 52:147-153.

74. Palacios G, Quan PL, Jabado OJ, Conlan S, Hirschberg DL, Liu Y, Zhai J, Renwick N, Hui J, Hegyi H, Grolla A, Strong JE, Towner JS, Geisbert TW, Jahrling PB, Büchen-Osmond C, Ellerbrok H, Sanchez-Seco MP, Lussier Y, Formenty P, Nichol MS, Feldmann H, Briese T, Lipkin WI. Panmicrobial oligonucleotide array for diagnosis of infectious diseases. Emerg Infect Dis. 2007. 13:73-81. PMID: 17370518.
crossref pmid pmc
75. Wongchotigul V, Suwanna N, Krudsood S, Chindanond D, Kano S, Hanaoka N, Akai Y, Maekawa Y, Nakayama S, Kojima S, Looareesuwan S. The use of flow cytometry as a diagnostic test for malaria parasites. Southeast Asian J Trop Med Public Health. 2004. 35:552-559. PMID: 15689065.
pmid
76. Shapiro HM, Mandy F. Cytometry in malaria: moving beyond Giemsa. Cytometry A. 2007. 71:643-645. PMID: 17712779.
crossref pmid
77. Izumiyama S, Omura M, Takasaki T, Ohmae H, Asahi H. Plasmodium falciparum: development and validation of a measure of intraerythrocytic growth using SYBR Green I in a flow cytometer. Exp Parasitol. 2009. 121:144-150. PMID: 19017530.
crossref pmid
78. Grobusch MP, Hänscheid T, Krämer B, Neukammer J, May J, Seybold J, Kun JF, Suttorp N. Sensitivity of hemozoin detection by automated flow cytometry in non- and semi-immune malaria patients. Cytometry B Clin Cytom. 2003. 55:46-51. PMID: 12949959.
crossref pmid
79. Padial MM, Subirats M, Puente S, Lago M, Crespo S, Palacios G, Baquero M. Sensitivity of laser light depolarization analysis for detection of malaria in blood samples. J Med Microbiol. 2005. 54:449-452. PMID: 15824421.
crossref pmid
80. de Langen AJ, van Dillen J, de Witte P, Mucheto S, Nagelkerke N, Kager P. Automated detection of malaria pigment: feasibility for malaria diagnosing in an area with seasonal malaria in northern Namibia. Trop Med Int Health. 2006. 11:809-816. PMID: 16772002.
crossref pmid
81. Hanscheid T, Melo-Cristino J, Pinto BG. Automated detection of malaria pigment in white blood cells for the diagnosis of malaria in Portugal. Am J Trop Med Hyg. 2001. 64:290-292. PMID: 11463119.

82. Mendelow BV, Lyons C, Nhlangothi P, Tana M, Munster M, Wypkema E, Liebowitz L, Marshall L, Scott S, Coetzer TL. Automated malaria detection by depolarization of laser light. Br J Haematol. 1999. 104:499-503. PMID: 10086786.
crossref pmid
83. Briggs C, Costa AD, Freeman Lyn, Aucamp I, Ngubeni B, Machin SJ. Development of an automated malaria discriminant factor using VCS technology. Am J Clin Pathol. 2006. 126:691-698. PMID: 17050066.
crossref pmid
84. Scholl PF, Kongkasuriyachai D, Demirev PA, Feldman AB, Lin JS, Sullivan DJ Jr, Kumar N. Rapid detection of malaria infection in vivo by laser desorption mass spectrometry. Am J Trop Med Hyg. 2004. 71:546-551. PMID: 15569781.

85. Park JW, Yoo SB, Oh JH, Yeom JS, Lee YH, Bahk YY, Kim YS, Lim KJ. Diagnosis of vivax malaria using an IgM capture ELISA is a sensitive method, even for low levels of parasitemia. Parasitol Res. 2008. 103:625-631. PMID: 18537047.
crossref pmid
86. Polpanich D, Tangboriboonrat P, Elaissari A, Udomsangpetch R. Detection of malaria infection via latex agglutination assay. Anal Chem. 2007. 79:4690-4695. PMID: 17511424.
crossref pmid
87. Chotivanich K, Silamut K, Udomsangpetch R, Stepniewska KA, Pukrittayakamee S, Looareesuwan S, White NJ. Ex-vivo short-term culture and developmental assessment of Plasmodium vivax. Trans R Soc Trop Med Hyg. 2001. 95:677-680. PMID: 11816444.
crossref
88. Udomsangpetch R, Kaneko O, Chotivanich K, Sattabongkot J. Cultivation of Plasmodium vivax. Trends Parasitol. 2008. 24:85-88. PMID: 18180202.

89. Prommano O, Chaisri U, Turner GD, Wilairatana P, Ferguson DJ, Viriyavejakul P, White NJ, Pongponratn E. A quantitative ultrastructural study of the liver and the spleen in fatal falciparum malaria. Southeast Asian J Trop Med Public Health. 2005. 36:1359-1370. PMID: 16610635.
pmid
90. Nguansangiam S, Day NP, Hien TT, Mai NT, Chaisri U, Riganti M, Dondorp AM, Lee SJ, Phu NH, Turner GD, White NJ, Ferguson DJ, Pongponratn E. A quantitative ultrastructural study of renal pathology in fatal Plasmodium falciparum malaria. Trop Med Int Health. 2007. 12:1037-1050. PMID: 17875015.
crossref pmid
91. Sachanonta N, Medana IM, Roberts R, Jones M, Day NP, White NJ, Ferguson DJ, Turner GD, Pongponratn E. Host vascular endothelial growth factor is tropic for Plasmodium falciparum-infected red blood cells. Asian Pac J Allergy Immunol. 2008. 26:37-45. PMID: 18595528.
pmid
Table 1.
Summary of modalities and issues for consideration in malaria diagnosis
Clinical diagnosis PBS QBC RDTs Serological tests PCR LAMP Microarrays FCM ACC MS
Principle of the method Based on presenting malarial signs and symptoms Visualization of morphological distinguishable stages of parasites under light microscope by thick and thin blood smear and staining Blood staining with acridine orange and detection by epi-fluorescent microscope Detection of parasite antigens or enzyme Detection of antibodies against parasites Specific amplification of malaria DNA Detection of turbidity by a turbidity meter after amplifying DNA sequences Hybridization of DNA isolate and quantified by fluorescence-based detection Detection of hemo-zoin by flow cytometer Detection of malarial pigment in activated monocyte Identification of heme by LDMS
Sensitivity and specificity Depends on malarial endemicity Depends on good technique, good reagent and micro-scopist’s skill Sensitivity and specificity higher than PBS Moderate if more than 100 parasite/μl Relatively high but not correlate to clinical symptoms of patients Excellent Excellent Relatively high Variable sensitivity, high specificity Variable in both sensitivity and specificity Undetermined
Time consumed (min) Depends on physician’s skill 30-60 <15 10-15 30-60 45-360 depends on the methods < 60 < 60 Automated, <1/sample Automated, <1/sample Automated, <1/sample
Detection limit (parasites/μl) Undeter-mined Expert ~5-10 Routinely > 50 > 5 50-100 Undeter-mined ≥1 > 5 Undeter-mined Poor correlation with parasitemia 5-20 100 for whole blood
Expertise required High: in non-endemic areas High: in non-endemic areas Moderate Low Moderate High High High High High High
Instrument cost - Low cost Moderate Moderate Moderate Expensive Moderate Expensive Expensive Expensive Expensive
Other considerations Easy to follow the diagnostic algorithm, Results in significant over-treatment of malaria, especially in highly endemic areas but lower estimation in hypoendem areas; severe malaria is commonly caused by P. falciparum; mixed infection is still problematic Gold standard method, Good for all human species (except P. knowlesi); need considerable expertise; mixed infection and low parasitemia may cause misdiagnosis Simple and user-friendly; electricity is needed; limit for species identification and quantitative parasite; cannot store capillaries for later reference 1st line diagnostic in all areas; suitable in field work; may not possible for differentiation between P. vivax, P. ovale and P. malariae; limited for quantifying parasites; low parasitemia may cause misdiagnosis Results can be influenced by trained technicians; possible for all human species; useful for epidemiological surveys; not useful for treatment decisionmaking 2nd line diagnosis in well-equipped laboratories; useful for identify the development of drug-resistance, species identification; and for quantifying parasite density at low parasitemia Limit for quantifying parasites; possible for all human species; clinical trials are needed to validate feasibility and clinical utility Still in the early stages of development for diagnosis of malaria Useful for diagnosis of clinically unsuspected malaria; clinical trials are needed to validate feasibility and clinical utility Clinical trials are needed to validate feasibility and clinical utility Still in early stages of development for diagnosis of malaria

PBS, peripheral blood smears; QBC, quantitative buffy coat; RDTs, rapid diagnostic tests; PCR, polymerase chain reaction; LAMP, loop-mediated isothermal amplification; FCM, flow cytometry; ACC, automated blood cell counter; MS, mass spectrometry; LDMS, laser desorption mass spectrometry.