Warning: mkdir(): Permission denied in /home/virtual/lib/view_data.php on line 81

Warning: fopen(upload/ip_log/ip_log_2024-07.txt): failed to open stream: No such file or directory in /home/virtual/lib/view_data.php on line 83

Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84
Boonjaraspinyo, Boonmars, Kaewsamut, Ekobol, Laummaunwai, Aukkanimart, Wonkchalee, Juasook, and Sriraj: A Cross-Sectional Study on Intestinal Parasitic Infections in Rural Communities, Northeast Thailand
Cited By
Citations to this article as recorded by
Comparative evaluation of Strongyloides ratti and S. stercoralis larval antigen for diagnosis of strongyloidiasis in an endemic area of opisthorchiasis
Chatanun Eamudomkarn, Paiboon Sithithaworn, Jiraporn Sithithaworn, Sasithorn Kaewkes, Banchob Sripa, Makoto Itoh
Parasitology Research.2015; 114(7): 2543.     CrossRef
Prevalence and predictors associated with intestinal infections by protozoa and helminths in southern Brazil
Maria Teresinha Gomes Casavechia, Maria Valdrinez Campana Lonardoni, Eneide Aparecida Sabaini Venazzi, Paula Aline Zanetti Campanerut-Sá, Hugo Rafael da Costa Benalia, Matheus Felipe Mattiello, Pedro Victor Lazaretti Menechini, Carlos Aparecido dos Santos
Parasitology Research.2016; 115(6): 2321.     CrossRef
First molecular characterization of Sarcocystis spp. in cattle in Qena Governorate, Upper Egypt
Asmaa M. El-kady, Nermean M. Hussein, Amal A. Hassan
Journal of Parasitic Diseases.2018; 42(1): 114.     CrossRef
Changing patterns of prevalence in Opisthorchis viverrini sensu lato infection in children and adolescents in northeast Thailand
Narong Khuntikeo, Paiboon Sithithaworn, Watcharin Loilom, Nisana Namwat, Puangrat Yongvanit, Bandit Thinkhamrop, Nadda Kiatsopit, Ross H. Andrews, Trevor N. Petney
Acta Tropica.2016; 164: 469.     CrossRef
Role of socio-cultural and economic factors in cyprinid fish distribution networks and consumption in Lawa Lake region, Northeast Thailand: Novel perspectives on Opisthorchis viverrini transmission dynamics
Christina Sunyoung Kim, John F Smith, Apiporn Suwannatrai, Pierre Echaubard, Bruce Wilcox, Sasithorn Kaewkes, Paiboon Sithithaworn, Banchob Sripa
Acta Tropica.2017; 170: 85.     CrossRef
Balantidiasis in humans: A systematic review and meta-analysis
Rayana Katylin Mendes da Silva, Laís Verdan Dib, Maria Regina Amendoeira, Camila Carvalho Class, Jessica Lima Pinheiro, Ana Beatriz Monteiro Fonseca, Alynne da Silva Barbosa
Acta Tropica.2021; 223: 106069.     CrossRef
Opisthorchis viverrini and Strongyloides stercoralis mono- and co-infections: Bayesian geostatistical analysis in an endemic area, Thailand
Apiporn T. Suwannatrai, Kavin Thinkhamrop, Kulwadee Suwannatrai, Khanittha Pratumchart, Kinley Wangdi, Matthew Kelly, Angela M. Cadavid Restrepo, Darren J. Gray, Archie C.A. Clements, Sirikachorn Tangkawattana, Banchob Sripa
Acta Tropica.2021; 223: 106079.     CrossRef
Current status of helminthiases in Thailand: A cross-sectional, nationwide survey, 2019
Oranard Wattanawong, Sopon Iamsirithaworn, Thongroo Kophachon, Worayuth Nak-ai, Ampas Wisetmora, Thitima Wongsaroj, Paron Dekumyoy, Choosak Nithikathkul, Apiporn T. Suwannatrai, Banchob Sripa
Acta Tropica.2021; 223: 106082.     CrossRef
Helminth infections and immunosenescence: The friend of my enemy
Amir Abdoli, Hoda Mirzaian Ardakani
Experimental Gerontology.2020; 133: 110852.     CrossRef
First molecular detection and characterization of Sarcocystis species in slaughtered cattle in North-West Tunisia
Safa Amairia, Yosra Amdouni, Mohamed Ridha Rjeibi, Mariem Rouatbi, Sofia Awadi, Mohamed Gharbi
Meat Science.2016; 122: 55.     CrossRef
High diversity of Blastocystis subtypes isolated from asymptomatic adults living in Chiang Rai, Thailand
Amara Yowang, Anastasios D. Tsaousis, Tawatchai Chumphonsuk, Nontaphat Thongsin, Niwed Kullawong, Siam Popluechai, Eleni Gentekaki
Infection, Genetics and Evolution.2018; 65: 270.     CrossRef
First report of human intestinal sarcocystosis in Cambodia
Virak Khieu, Hanspeter Marti, Saomony Chhay, Meng Chuor Char, Sinuon Muth, Peter Odermatt
Parasitology International.2017; 66(5): 560.     CrossRef
Foodborne zoonotic parasites of the family Opisthorchiidae
Weerachai Saijuntha, Paiboon Sithithaworn, Trevor N. Petney, Ross H. Andrews
Research in Veterinary Science.2021; 135: 404.     CrossRef
Prevalence of intestinal parasitic infections among schoolchildren in Phitsanulok Province, Northern Thailand
Raxsina Polseela, Apichat Vitta
Asian Pacific Journal of Tropical Disease.2015; 5(7): 539.     CrossRef
Prevalence and risk factors of intestinal parasitic infections among hill tribe schoolchildren, Northern Thailand
Tawatchai Apidechkul
Asian Pacific Journal of Tropical Disease.2015; 5(9): 695.     CrossRef
Parasitic infections in relation to practices and knowledge in a rural village in Northern Thailand with emphasis on fish-borne trematode infection
K. Chaisiri, C. Jollivet, P. Della Rossa, S. Sanguankiat, D. Wattanakulpanich, C. Lajaunie, A. Binot, M. Tanita, S. Rattanapikul, D. Sutdan, S. Morand, A. Ribas
Epidemiology and Infection.2019;[Epub]     CrossRef
Eosinophilia and parasitic infestations in patients with chronic obstructive pulmonary disease
Narongkorn Saiphoklang, Chanya Chomchoey
Scientific Reports.2020;[Epub]     CrossRef
Plasma IgG autoantibody against actin‐related protein 3 in liver fluke Opisthorchis viverrini infection
R. Rucksaken, O. Haonon, P. Pinlaor, C. Pairojkul, S. Roytrakul, P. Yongvanit, C. Selmi, S. Pinlaor
Parasite Immunology.2015; 37(7): 340.     CrossRef
Human Infections with Sarcocystis Species
Ronald Fayer, Douglas H. Esposito, Jitender P. Dubey
Clinical Microbiology Reviews.2015; 28(2): 295.     CrossRef
Current Status of Epidemiology and Diagnosis of Human Sarcocystosis
Casper Sahl Poulsen, Christen Rune Stensvold, G. V. Doern
Journal of Clinical Microbiology.2014; 52(10): 3524.     CrossRef
Prevalence and Associated Factors of Intestinal Parasitic Infections among Food Handlers at Prison, East and West Gojjam, Ethiopia
Azmeraw Asires, Moges Wubie, Alemayehu Reta
Advances in Medicine.2019; 2019: 1.     CrossRef
Molecular Identification, Pathogenesis, and Life Cycle of Sarcocystis cruzi from Cattle (Bos taurus) in New Valley Governorate, Egypt
Mohammed B. M. El-Mahdi, Soheir A. Rabie, Reda M. El-S. Hassanine, Amal A. Hassan, Obaida F. Abo Elhussien, Mamdooh Ghoneum, Mohamed S. A. El-Gerbed, Eric Agola Lelo
Journal of Parasitology Research.2023; 2023: 1.     CrossRef
Prevalence of intestinal parasitic infection and associated risk factors among village health volunteers in rural communities of southern Thailand
Chuchard Punsawad, Nonthapan Phasuk, Suchirat Bunratsami, Kanjana Thongtup, Niramon Siripakonuaong, Somchok Nongnaul
BMC Public Health.2017;[Epub]     CrossRef
Current high prevalences of Strongyloides stercoralis and Opisthorchis viverrini infections in rural communities in northeast Thailand and associated risk factors
Pokkamol Laoraksawong, Oranuch Sanpool, Rutchanee Rodpai, Tongjit Thanchomnang, Wanida Kanarkard, Wanchai Maleewong, Ratthaphol Kraiklang, Pewpan M. Intapan
BMC Public Health.2018;[Epub]     CrossRef
Prevalence of intestinal parasitic infections and associated risk factors for hookworm infections among primary schoolchildren in rural areas of Nakhon Si Thammarat, southern Thailand
Chuchard Punsawad, Nonthapan Phasuk, Suchirat Bunratsami, Kanjana Thongtup, Parnpen Viriyavejakul, Sarawoot Palipoch, Phanit Koomhin, Somchok Nongnaul
BMC Public Health.2018;[Epub]     CrossRef
Impact of the health education and preventive equipment package (HEPEP) on prevention of Strongyloides stercoralis infection among rural communities in Northeast Thailand: a cluster randomized controlled trial
Pokkamol Laoraksawong, Oranuch Sanpool, Rutchanee Rodpai, Tongjit Thanchomnang, Wanida Kanarkard, Wanchai Maleewong, Ratthaphol Kraiklang, Pewpan M Intapan
BMC Public Health.2018;[Epub]     CrossRef
Prevalence of soil-transmitted helminth infections and associated risk factors among elderly individuals living in rural areas of southern Thailand
Ratee Kache, Nonthapan Phasuk, Parnpen Viriyavejakul, Chuchard Punsawad
BMC Public Health.2020;[Epub]     CrossRef
Current prevalence and geographic distribution of helminth infections in the parasitic endemic areas of rural Northeastern Thailand
Pongsakorn Martviset, Wansika Phadungsil, Kesara Na-Bangchang, Wiwat Sungkhabut, Tanutchamon Panupornpong, Parisa Prathaphan, Nattaya Torungkitmangmi, Salisa Chaimon, Chompunoot Wangboon, Mantana Jamklang, Sirilak Chumkiew, Pichanee Watthanasiri, Amornrat
BMC Public Health.2023;[Epub]     CrossRef
Epidemiology of Taenia saginata taeniosis/cysticercosis: a systematic review of the distribution in East, Southeast and South Asia
Ramon M. Eichenberger, Lian F. Thomas, Sarah Gabriël, Branco Bobić, Brecht Devleesschauwer, Lucy J. Robertson, Anastasios Saratsis, Paul R. Torgerson, Uffe C. Braae, Veronique Dermauw, Pierre Dorny
Parasites & Vectors.2020;[Epub]     CrossRef
Performance of Mini Parasep® SF stool concentrator kit, Kato-Katz, and formalin-ethyl acetate concentration methods for diagnosis of opisthorchiasis in Northeast Thailand
Kulthida Y. Kopolrat, Seri Singthong, Narong Khuntikeo, Watcharin Loilome, Chanika Worasith, Chutima Homwong, Chompunoot Wangboon, Patiwat Yasaka, Chatanun Eamudomkarn, Opal Pitaksakulrat, Krisnakorn Tonkhamhak, Arunee Paeyo, Thomas Crellen, Jiraporn Sith
Parasites & Vectors.2022;[Epub]     CrossRef
Slight Changes in the Gut Microbiome in Early-stage Chronic Kidney Disease of Unknown Etiology
Ditsayathan Banjong, Thatsanapong Pongking, Na T. D. Tran, Somchai Pinlaor, Rungtiwa Dangtakot, Kitti Intuyod, Sirirat Anutrakulchai, Ubon Cha’on, Porntip Pinlaor
Microbes and Environments.2023; 38(3): n/a.     CrossRef
Balantidiasis a Potential Neglected Zoonotic Disease and the Liar Paradox
Napoli E, L Nalbone, Giarratana F
Biosciences Biotechnology Research Asia.2021; 18(1): 5.     CrossRef
The extent, nature, and pathogenic consequences of helminth polyparasitism in humans: A meta-analysis
Rose E. Donohue, Zoë K. Cross, Edwin Michael, Adam Akullian
PLOS Neglected Tropical Diseases.2019; 13(6): e0007455.     CrossRef
Analysis of D-A locus of tRNA-linked short tandem repeats reveals transmission of Entamoeba histolytica and E. dispar among students in the Thai-Myanmar border region of northwest Thailand
Urassaya Pattanawong, Chaturong Putaporntip, Azumi Kakino, Naoko Yoshida, Seiki Kobayashi, Surasuk Yanmanee, Somchai Jongwutiwes, Hiroshi Tachibana, Kevin SW Tan
PLOS Neglected Tropical Diseases.2021; 15(2): e0009188.     CrossRef
Global prevalence of 4 neglected foodborne trematodes targeted for control by WHO: A scoping review to highlight the gaps
Rachel Tidman, Kaushi S. T. Kanankege, Mathieu Bangert, Bernadette Abela-Ridder, Paul R. Torgerson
PLOS Neglected Tropical Diseases.2023; 17(3): e0011073.     CrossRef
Intestinal parasite infections in a rural community of Rio de Janeiro (Brazil): Prevalence and genetic diversity of Blastocystis subtypes
Carolina Valença Barbosa, Magali Muniz Barreto, Rosemary de Jesus Andrade, Fernando Sodré, Claudia Masini d’Avila-Levy, José Mauro Peralta, Ricardo Pereira Igreja, Heloisa Werneck de Macedo, Helena Lucia Carneiro Santos, Maria Victoria Periago
PLOS ONE.2018; 13(3): e0193860.     CrossRef
Zoonotic intestinal protozoan of the wild boars, Sus scrofa, in Persian Gulf’s coastal area (Bushehr province), Southwestern Iran
Kambiz Yaghoobi, Bahador Sarkari, Majid Mansouri, Mohammad Hossein Motazedian
Veterinary World.2016; 9(10): 1047.     CrossRef
First report on molecular characteristics and risk factor analysis of Ehrlichia canis in dogs in Khon Kaen, Thailand
Thongphet Mitpasa, Biethee Rani Sarker, Arayaporn Macotpet, Pattara-Anong Bupata, Somboon Sangmaneedet, Weerapol Taweenan
Veterinary World.2022; : 232.     CrossRef
Molecular detection and phylogeny of Ehrlichia canis and Anaplasma platys in naturally infected dogs in Central and Northeast Thailand
Andaman Purisarn, Sakulchit Wichianchot, Cherdsak Maneeruttanarungroj, Bandid Mangkit, Wuttinun Raksajit, Sarawan Kaewmongkol, Thitichai Jarudecha, Wanat Sricharern, Rucksak Rucksaken
Veterinary World.2022; : 2877.     CrossRef
Parasites observed in urine sediments: A learning from incidental rare species
Swati Raj, Alka Yadav
IP Journal of Diagnostic Pathology and Oncology.2023; 8(1): 13.     CrossRef
One Health Approach of Melioidosis and Gastrointestinal Parasitic Infections from Macaca fascicularis to Human at Kosumpee Forest Park, Maha Sarakham, Thailand
Panitporn Damrongsukij, Papichchaya Doemlim, Ratchanon Kusolsongkhrokul, Tawatchai Tanee, Pitchakorn Petcharat, Bunnada Siriporn, Supawadee Piratae, Natapol Pumipuntu
Infection and Drug Resistance.2021; Volume 14: 2213.     CrossRef
Balantidium coli; Rare and Accidental Finding in the Urine of Pregnant Woman: Case Report
Andargachew Almaw, Ayenew Berhan, Yenealem Solomon, Birhanemaskal Malkamu, Tahir Eyayu, Lemma Workineh, Getachew Mekete, Ashagrachew Tewabe Yayehrad
International Medical Case Reports Journal.2022; Volume 15: 105.     CrossRef
Knowledge about Intestinal Worm Infection and Helminthiasis in Pregnant Women
M. Mutalazimah, Luky Mustikaningrum
Electronic Journal of General Medicine.2020; 17(3): em215.     CrossRef
Intestinal Parasitic Infections and Environmental Water Contamination in a Rural Village of Northern Lao PDR
Alexis Ribas, Chloé Jollivet, Serge Morand, Boupha Thongmalayvong, Silaphet Somphavong, Chern-Chiang Siew, Pei-Jun Ting, Saipin Suputtamongkol, Viengsaene Saensombath, Surapol Sanguankiat, Boon-Huan Tan, Phimpha Paboriboune, Kongsap Akkhavong, Kittipong C
The Korean Journal of Parasitology.2017; 55(5): 523.     CrossRef
Prevalence of Intestinal Parasites and Associated Risk Factors for Infection among Rural Communities of Chachoengsao Province, Thailand
Pisit Suntaravitun, Amornrat Dokmaikaw
The Korean Journal of Parasitology.2018; 56(1): 33.     CrossRef
The Coexistence of Blastocystis spp. in Humans, Animals and Environmental Sources from 2010–2021 in Asia
Adedolapo Aminat Rauff-Adedotun, Farah Haziqah Meor Termizi, Nurshafarina Shaari, Ii Li Lee
Biology.2021; 10(10): 990.     CrossRef
A Simple Genotyping Method for Rapid Differentiation of Blastocystis Subtypes and Subtype Distribution of Blastocystis spp. in Thailand
Nittaya Srichaipon, Surang Nuchprayoon, Sarit Charuchaibovorn, Pattadon Sukkapan, Vivornpun Sanprasert
Pathogens.2019; 8(1): 38.     CrossRef
Soil-Transmitted Helminths in Tropical Australia and Asia
Catherine Gordon, Johanna Kurscheid, Malcolm Jones, Darren Gray, Donald McManus
Tropical Medicine and Infectious Disease.2017; 2(4): 56.     CrossRef
Knowledge, Attitudes, and Practices regarding Soil-Transmitted Helminthiasis among Village Health Volunteers in Nakhon Si Thammarat Province, Thailand: A Cross-Sectional Study
Udomsak Narkkul, Prasit Na-ek, Jaranit Kaewkungwal, Chuchard Punsawad
Tropical Medicine and Infectious Disease.2022; 7(2): 33.     CrossRef
Prevalence and Associated Risk Factors of Intestinal Parasitic Infections: A Population-Based Study in Phra Lap Sub-District, Mueang Khon Kaen District, Khon Kaen Province, Northeastern Thailand
Sirintip Boonjaraspinyo, Thidarut Boonmars, Nuttapon Ekobol, Atchara Artchayasawat, Pranee Sriraj, Ratchadawan Aukkanimart, Benjamabhorn Pumhirunroj, Panupan Sripan, Jiraporn Songsri, Amornrat Juasook, Nadchanan Wonkchalee
Tropical Medicine and Infectious Disease.2022; 8(1): 22.     CrossRef
An Epidemiological Survey of Intestinal Parasitic Infection and the Socioeconomic Status of the Ethnic Minority People of Moken and Orang Laut
Suphaluck Wattano, Kamonwan Kerdpunya, Phongton Keawphanuk, Saowalak Hunnangkul, Sumas Loimak, Aunchalee Tungtrongchitra, Metta Wongkamchai, Sirichit Wongkamchai
Tropical Medicine and Infectious Disease.2023; 8(3): 161.     CrossRef
Factors Associated with Helminthiasis among Vegetable Farmers in Barito Kuala District
Hadi Prayitno, Aprizal Satria Han, Qomariyatus Sholihah
Asian Journal of Epidemiology.2017; 10(3): 108.     CrossRef
Long-Tailed Macaques (Macaca fascicularis) in Urban Landscapes: Gastrointestinal Parasitism and Barriers for Healthy Coexistence in Northeast Thailand
Janna M. Schurer, Vickie Ramirez, Pensri Kyes, Tawatchai Tanee, Natcha Patarapadungkit, Penkhae Thamsenanupap, Sally Trufan, Erica T. Grant, Gemina Garland-Lewis, Stephen Kelley, Hutsacha Nueaitong, Randall C. Kyes, Peter Rabinowitz
The American Journal of Tropical Medicine and Hygiene.2019; 100(2): 357.     CrossRef
Review and Current Status of Opisthorchis viverrini Infection at the Community Level in Thailand
Natthawut Kaewpitoon, Nusorn Kootanavanichpong, Ponthip Kompor, Wasugree Chavenkun, Jirawoot Kujapun, Jun Norkaew, Sukanya Ponphimai, Likit Matrakool, Taweesak Tongtawee, Sukij Panpimanmas, Ratana Rujirakul, Natnapa Padchasuwan, Poowadol Pholsripradit, Th
Asian Pacific Journal of Cancer Prevention.2015; 16(16): 6825.     CrossRef

Abstract

Despite the existence of effective anthelmintics, parasitic infections remain a major public health problem in Southeast Asia, including Thailand. In rural communities, continuing infection is often reinforced by dietary habits that have a strong cultural basis and by poor personal hygiene and sanitation. This study presents a survey of the prevalence of intestinal parasitic infections among the people in rural Thailand. The community-based cross-sectional study was conducted in villages in Khon Kaen Province, northeastern Thailand, from March to August 2013. A total of 253 stool samples from 102 males and 140 females, aged 2-80 years, were prepared using formalin-ethyl acetate concentration methods and examined using light microscopy. Ninety-four individuals (37.2%) were infected with 1 or more parasite species. Presence of parasitic infection was significantly correlated with gender (P=0.001); nearly half of males in this survey (49.0%) were infected. Older people had a higher prevalence than younger members of the population. The most common parasite found was Opisthorchis viverrini (26.9%), followed by Strongyloides stercoralis (9.5%), Taenia spp. (1.6%), echinostomes (0.4%), and hookworms (0.4%). The prevalence of intestinal protozoa was Blastocystis hominis 1.6%, Entamoeba histolytica 0.8%, Entamoeba coli 0.8%, Balantidium coli 0.4%, Iodamoeba bütschlii 0.4%, and Sarcocystis hominis 0.4%. Co-infections of various helminths and protozoa were present in 15.9% of the people. The present results show that the prevalence of parasitic infections in this region is still high. Proactive education about dietary habits, personal hygiene, and sanitation should be provided to the people in this community to reduce the prevalence of intestinal parasite infections. Moreover, development of policies and programs to control parasites is needed.

INTRODUCTION

More than a quarter of the world's population is infected with intestinal parasites and 450 million people, especially in developing countries, may host multiple parasite species [1-3]. In Southeast Asia, including Thailand, parasitic infections remain a public health problem. The prevalence is particularly high in northeastern Thailand [4-6]. In rural communities, people still have cultural beliefs concerning diet, poor personal hygiene, and sanitation. Parasites transmitted via fecal-oral route (some trematodes, cestodes, and protozoa) are commonly found in rural communities. The infection may be caused among the people who frequently consume fresh vegetables and raw meat contaminated with food-borne parasites [7,8]. Soil-transmitted parasites (nematodes) occur in people who walk barefoot on contaminated soil or consume soil-contaminated food [9,10]. Lack of access to potable water and hot and humid tropical climate are additional factors associated with intestinal parasitic infections [11,12]. Although effective anthelmintic drugs exist and programs for prevention of parasitic infections have been initiated, some intestinal parasites remain a problem.
This study presents a cross-sectional survey of the prevalence of intestinal parasitic infections among the people in rural communities in northeastern Thailand and explores associations between parasitic infections and sociodemographic data.

MATERIALS AND METHODS

Data collection

A community-based cross-sectional study was conducted in 19 villages (estimated 20,000 people) through which the Shi and Pong Rivers flow in Khon Kaen Province, northeastern Thailand, from March to August 2013. In total, 253 volunteers were recruited in this study. A self-administered questionnaire was used to collect data on sociodemographic characteristics and related data. All participants were informed about the purpose, procedures, risks, and potential benefits of this study. Written informed consent was obtained from each participant. All protocols were approved by the Human Ethics Committee of Khon Kaen University, Khon Kaen, Thailand (ethical clearance no. HE561219).

Stool collection and examination

Plastic containers were distributed, and participants were instructed on the procedure for stool specimen collection. Sample containers were marked with the participant identification number. All samples were stored in an ice-box for less than 6 hr, and then preserved in 10% formalin solution prior to processing using formalin-ether concentration methods [13,14] at the Parasitology Laboratory, Faculty of Medicine, Khon Kaen University. Presence of parasites in the sediments was examined using a light microscope. Each specimen was sampled for 2 slides and observed by 2 parasitologists. A stool sample was considered positive if at least 1 parasite was detected in 1 slide.

Data analysis

The prevalence of intestinal parasites was stratified according to sociodemographic data and was reported by descriptive statistics. Pearson's chi-squared test was used to determine whether there was a statistically significant difference between the parasitic infected and uninfected groups together with variable factors. The P-values of <0.05 were considered statistically significant.

RESULTS

Of the 253 stool samples, 102 were collected from males (42%), 140 from females (58%), and 11 samples without marking the gender, aged 2-80 years with the mean age of 55.0±1.4 years. Most participants (99.2%) were buddhists and native northeastern people. Seventy percent of participants had completed only the primary school. The principal occupations in this community were agriculturist (35.5%), laborer (24.2%), and housewife (18.6%). Ninety-four individuals were infected with 1 or more parasites (Fig. 1). The prevalence rate among males (50 individuals; 20.7%) was slightly higher than that among females (40 individuals; 16.5%). People aged 41-60 years had a higher prevalence (19%) than those in other age groups (Table 1). Those in the agriculturist and labor categories had prevalence of 11.7%. Of those who had completed primary school, 27.8% were infected with parasites (Table 1). The most common intestinal parasite found was Opisthorchis viverrini (68 cases; 26.9%), followed by Strongyloides stercoralis (24 cases; 9.5%), Taenia spp., echinostome, and hookworm with 4 cases (1.6%), 1 case (0.4%), and 1 case (0.4%), respectively (Fig. 1). The prevalence of intestinal protozoa in this community were 4 cases (1.6%) of Blastocystis hominis, 2 cases (0.8%) each of Entamoeba histolytica and E. coli. Balantidium coli, Iodamoeba bütschlii, and Sarcocystis hominis were found in 1 case (0.4%) each. Seventy-nine individuals were infected with a single parasite species (31.2%), and 15 (5.9%) were infected with more than 1 parasite species (Table 2).
Correlation between parasitic infections and sociodemographic characteristics of the people in rural communities was shown in Table 3. Parasitic infections were significantly correlated with gender (P=0.001). Nearly half of the males (49.0%) were infected. However, there were no correlations of parasitic infection with age, occupation, and education. Certain subgroups exhibited (non-significantly) higher prevalences than other subgroups within their categories. These included 61-80 year age group (relative to younger age subgroups), those who had completed only the primary school (relative to more highly educated subgroups) and laborer relative to other occupation categories (Table 3).
Male individuals, those aged 61-80 years, those who had completed only the primary school, and those in the laborer subcategory exhibited the highest prevalences of O. viverrini (Fig. 2). Fig. 3 shows a rather similar picture for S. stercoralis infection. Again, males and those of lower educational attainment exhibited the highest prevalence in their categories. Merchants and persons aged 41-60 years had the highest prevalence of parasitic infections in the occupation and age categories, respectively.
Dietary behavior, personal hygiene, and sanitation were shown in Fig. 4. Forty percent of those surveyed never had stool examinations and 34% never used anthelmintic drugs. People in this community usually ate sticky rice by hand (54.3%) and used a spoon (56.8%) for eating soup. Participants ate food freshly cooked (70.4%) but sometimes left food overnight before eating it (58.5%). People generally drank filtered tap water (50.7%) and bottled water (44.4%), although a few drank natural water or rainwater. Among the subjects, 85.6% wore shoes every time when going outside the house, and 51.7% always wore boots when at their farms, but 26.5% never wore boots. The toilet in their house was always used for urination or defecation (95.2%), but surprisingly 30.3% of people never used the toilet and defecated at the farm. About a half of the people (54.8%) always used toilet at the farm. Most people washed their hands after touching soil, after going to the toilet, before eating, after touching an animal or a pet, and most cleaned their nails regularly (Fig. 4).
Likely sources of food-borne parasitic infections in this rural community are presented in Fig. 5. Most people ate freshwater plants but fewer than 10% of villagers always or often ate uncooked or half-cooked meat. Somewhat more popular were uncooked fish salad, half cooked meat, raw crab, half-cooked bug, half-cooked snail, live shrimp, and uncooked pla som. People rarely ate half-cooked dragonfly nymphs, tadpoles, and frogs only 7.0-9.6%.

DISCUSSION

Our study showed that more than 1/3 of 253 participants had infections with 1 or more species of parasites. High prevalences of O. viverrini (26.9%) and S. stercoralis (9.5%) were found. This result was similar to those in previous studies in Thai rural communities that found prevalences of opisthorchiasis to be 21.6/100 person in a year [15] and 24.5% [16]. The prevalence of S. stercoralis in our study was similar to that in the previous study [14] that diagnosed S. stercoralis in 10.5% of the population using a formalin-ether concentration method.
The present study showed a significant correlation between gender and parasitic infections (P=0.001), with males having a higher prevalence for all parasite species. This result was similar to the previous findings [5]. The gender difference may be due to male-specific behavioral factors [17] such as the eating raw meat, alcohol drinking with colleagues, and taking risks with their work in the farm. In our study, the prevalence of parasitic infections in older people (age >40 years) was higher than in young people (age <40 years). Rangsin et al. [15] reported that the prevalence of opisthorchiasis was correlated with age >60 years. Our findings were the same. This may be because 1) older people still have the culturally-embedded habit of eating uncooked food, 2) older people had poorer education and live in conditions of poor sanitation, and 3) survival time of some parasites in the host is one of the important factors for higher prevalence in the old people. Certainly, many people in this community have a low level of education, having completed only the primary school, and these people have a relatively high prevalence of parasites [5]. Health education programs should target this group and teach them about risky eating habits and the benefits of wearing shoes.
This study showed the incidence of parasitic infections was not significantly different between occupations. However, the highest incidence was found in the laborer, agriculturist, and housewife subgroups. Presumably again, social and behavioral factors are responsible for these differences, as suggested in a previous report about Nigerian workers [18] and Thai and Myanmar workers [19]. Among the subjects, 40% never had stool examinations, and many never or rarely used anthelmintic drugs by themselves. These results indicate the lack of public health activities aimed at prevention and control of parasitic infections in this area. Most people still eat food with their fingers, following local tradition. This may contribute to spread of infection by hand contamination.
Household sanitation in this rural community was not poor. Most people drank filtered tap water and bottled water. Only a few people drank rainwater and river/pond water that may cause protozoan infections in this community. In general, the villagers always wore shoes to go outside. When working on their farm, some villagers always wore boots, whereas some others never did. Villagers always used the toilet at home, but many urinated or defecated on the ground when working at the farm. Such behavior promotes spread of soil-transmitted parasites. The personal hygiene in this community was good; almost all villagers cleaned their nails and washed their hands before eating and after using the toilet, touching an animal or a pet and soil. An interesting result was that about 14.2% of people never washed hands after touching an animal or a pet. In daily life, fresh and uncooked vegetables, such as morning glory and mimosa, are the most likely source of food-borne parasitic infections. People still eat uncooked food, such as raw spices, beef salad, half cooked meat (especially infection through beef and pork) more often than they eat raw crab, half-cooked bug, half-cooked snail, live shrimp, and uncooked pla som.
Although the Thai government spends a lot of money on programs for prevention and control of parasitic infections in endemic areas, our study shows that parasites are still prevalent in this community. The main reason for the failure of previous or present programs is likely to be the lack of culturally sensitive and well-formulated health education about raw food consumption attitudes and practices [19]. Therefore, proactive health education to reduce transmission and reinfection by encouraging healthy behaviors in cultural beliefs, personal hygiene, and sanitation should be provided to the people in this community especially in the primary school.
TRFRTA5580004
Khon Kaen UniversityAS56201

ACKNOWLEDGMENTS

This work was supported by a grant from Khon Kaen University and the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, through the Health Cluster (SHeP-GMS) and TRF Senior Research Scholar Grant no. RTA5580004. We also wish to thank Faculty of Medicine to give research assistance (AS56201), the Department of Parasitology, Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand for their assistance.

REFERENCES

1. Robertson LJ, van der Giessen JW, Batz MB, Kojima M, Cahill S. Have foodborne parasites finally become a global concern? Trends Parasitol 2013;29:101-103. PMID: 23375923.
crossref pmid
2. de Silva NR, Brooker S, Hotez PJ, Montresor A, Engels D, Savioli L. Soil-transmitted helminth infections: updating the global picture. Trends Parasitol 2003;19:547-551. PMID: 14642761.
crossref pmid
3. WHO. Control of Tropical Diseases. Geneva, Switzwerland. WHO. 1998.

4. Conlan JV, Khamlome B, Vongxay K, Elliot A, Pallant L, Sripa B, Blacksell SD, Fenwick S, Thompson RC. Soil-transmitted helminthiasis in Laos: a community-wide cross-sectional study of humans and dogs in a mass drug administration environment. Am J Trop Med Hyg 2012;86:624-634. PMID: 22492147.
crossref pmid pmc
5. Songserm N, Promthet S, Wiangnon S, Sithithaworn P. Prevalence and co-infection of intestinal parasites among Thai rural residents at high-risk of developing cholangiocarcinoma: a cross-sectional study in a prospective Cohort study. Asian Pac J Cancer Prev 2012;13:6175-6179. PMID: 23464426.
crossref pmid
6. Tun A, Myat SM, Gabrielli AF, Montresor A. Control of soil-transmitted helminthiasis in Myanmar: results of 7 years of deworming. Trop Med Int Health 2013;doi: 10.1111/tmi.12130
crossref
7. Dorny P, Praet N, Deckers N, Gabriel S. Emerging food-borne parasites. Vet Parasitol 2009;163:196-206. PMID: 19559535.
crossref pmid
8. Macpherson CN, Gottstein B, Geerts S. Parasitic food-borne and water-borne zoonoses. Rev Sci Tech 2000;19:240-258. PMID: 11189719.
pmid
9. Naish S, McCarthy J, Williams GM. Prevalence, intensity and risk factors for soil-transmitted helminth infection in a South Indian fishing village. Acta Trop 2004;91:177-187. PMID: 15234667.
crossref pmid
10. Nyarango RM, Aloo PA, Kabiru EW, Nyanchongi BO. The risk of pathogenic intestinal parasite infections in Kisii Municipality, Kenya. BMC Public Health 2008;8:237. PMID: 18620608.
crossref pmid pmc
11. Hernandez AD, Poole A, Cattadori IM. Climate changes influence free-living stages of soil-transmitted parasites of European rabbits. Glob Chang Biol 2013;19:1028-1042. PMID: 23504881.
crossref pmid
12. Marcogliese DJ, Cone DK. Parasite communities as indicators of ecosystem stress. Parassitologia 1997;39:227-232. PMID: 9802071.
pmid
13. Elkins DB, Haswell-Elkins MR, Mairiang E, Mairiang P, Sithithaworn P, Kaewkes S, Bhudhisawasdi V, Uttaravichien T. A high frequency of hepatobiliary disease and suspected cholangiocarcinoma associated with heavy Opisthorchis viverrini infection in a small community in north-east Thailand. Trans R Soc Trop Med Hyg 1990;84:715-719. PMID: 2177578.
crossref
14. Intapan PM, Maleewong W, Wongsaroj T, Singthong S, Morakote N. Comparison of the quantitative formalin ethyl acetate concentration technique and agar plate culture for diagnosis of human strongyloidiasis. J Clin Microbiol 2005;43:1932-1933. PMID: 15815023.
crossref pmid pmc
15. Rangsin R, Mungthin M, Taamasri P, Mongklon S, Aimpun P, Naaglor T, Leelayoova S. Incidence and risk factors of Opisthorchis viverrini infections in a rural community in Thailand. Am J Trop Med Hyg 2009;81:152-155. PMID: 19556581.
pmid
16. Sriamporn S, Pisani P, Pipitgool V, Suwanrungruang K, Kamsa-ard S, Parkin DM. Prevalence of Opisthorchis viverrini infection and incidence of cholangiocarcinoma in Khon Kaen, Northeast Thailand. Trop Med Int Health 2004;9:588-594. PMID: 15117303.
crossref pmid
17. Zuk M, McKean KA. Sex differences in parasite infections: patterns and processes. Int J Parasitol 1996;26:1009-1023. PMID: 8982783.
crossref pmid
18. Ejezie GC, Akpan IF. Human ecology and parasitic infections. 1.The effect of occupation on the prevalence of parasitic infections in Calabar, Nigeria. J Hyg Epidemiol Microbiol Immunol 1992;36:161-167.
pmid
19. Puangsa-art S, Yimsamran S, Buchachart K, Thanyavanich N, Wuthisen P, Rukmanee P, Maneeboonyang W, Prommongkol S, Rukmanee N. Study on the Ecology of Anopheline Larvae in Malaria Endemic Areas of Tanowsri Canton, Suanphung District, Ratchaburi Province. J Trop Med Parasitol 2006;29:56-64.

20. Grundy-Warr C, Andrews RH, Sithithaworn P, Petney TN, Sripa B, Laithavewat L, Ziegler AD. Raw attitudes, wetland cultures, life-cycles: socio-cultural dynamics relating to Opisthorchis viverrini in the Mekong Basin. Parasitol Int 2012;61:65-70. PMID: 21712097.
crossref pmid
Fig. 1
Prevalence of intestinal parasites found in people among rural communities.
kjp-51-727-g001
Fig. 2
Percentage of Opisthorchis viverrini infection with sociodemographic characteristics
kjp-51-727-g002
Fig. 3
Percentage of Strongyloides stercoralis infection with sociodemographic characteristics.
kjp-51-727-g003
Fig. 4
Percentage of parasite examination and treatment (A), dietary behavior (B), drinking water consumption (C), shoes wearing (D), toilet using (E), and personal hygiene (F).
kjp-51-727-g004
Fig. 5
Percentage of foodborne parasitic infectious source consumption.
kjp-51-727-g005
Table 1.
Prevalence of intestinal parasites in rural communities stratified by sociodemographic characteristics
Sociodemographic characteristics No. of participants No. of infected cases Prevalence (%)
Age (n = 242)
 ≤ 20 6 0 0.0
 21-40 22 8 3.3
 41-60 129 46 19.0
 61-80 85 35 14.5
Gender (n = 242)
 Male 102 50 20.7
 Female 140 40 16.5
Education (n = 230)
 Primary school 161 64 27.8
 Secondary school 49 19 8.3
 Bachelor degree and over 20 3 1.3
Occupation (n = 231)
 Agriculturist 82 27 11.7
 Officer 11 3 1.3
 Labor 56 27 11.7
 Merchant 26 8 3.5
 Housewife 43 17 7.4
 Other 13 4 1.7
Table 2.
Prevalence of single and double intestinal parasite infections found in people in rural communities
Parasitic infection No. of cases Prevalence (%)
Single infection
 Helminth
  Opisthorchis viverrini 57 22.5
  Taenia spp. 1 0.4
  Echinostome 1 0.4
  Strongyloides stercoralis 15 5.9
 Protozoa
  Entamoeba histolytica 2 0.8
  Entamoeba coli 2 0.8
  Blastocystis hominis 1 0.4
  Total 79 31.2
Double infection
  O. viverrini - S.stercoralis 8 3.3
  O. viverrini - Taenia spp. 2 0.8
  O. viverrini - Hookworm 1 0.4
  S. stercoralis - Taenia spp. 1 0.4
  B. hominis - B. coli 1 0.4
  B. hominis - I. bütschlii 1 0.4
  B. hominis - S. hominis 1 0.4
  Total 15 5.9
Table 3.
Correlation between parasitic infections and sociodemographic characteristics of people in rural communities
Sociodemographic characteristics No-infection (%) Infection (%) P-value
Age (n = 242)
 ≤ 20 6 (100.0) 0 (0.0) 0.234
 21-40 14 (63.6) 8 (36.4)
 41-60 83 (64.3) 46 (35.7)
 61-80 50 (58.8) 35 (41.2)
Gender (n = 242)
 Male 52 (51.0) 50 (49.0) 0.001a
 Female 100 (71.4) 40 (28.6)
Education (n = 230)
 Primary school 97 (60.2) 64 (39.8) 0.095
 Secondary school and diploma 30 (61.2) 19 (38.8)
 Bachelor degree and over 17 (85.0) 3 (15.0)
Occupation (n = 231)
 Agriculturist 55 (67.1) 27 (32.9) 0.441
 Officer 8 (72.7) 3 (27.3)
 Labor 29 (51.8) 27 (48.2)
 Merchant 18 (69.2) 8 (30.8)
 Housewife 26 (60.5) 17 (39.5)
 Other 9 (69.2) 4 (30.8)

a Statistically significant.