1. Sacks D, Baxter B, Campbell BCV, Carpenter JS, Cognard C, et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke 2018;13(6):612-632
https//doi.org/10.1177/1747493018778713
3. Jones JL, Dargelas V, Roberts J, Press C, Remington JS, et al. Risk factors for
Toxoplasma gondii infection in the United States. Clin Infect Dis 2009;49(6):878-884
https//doi.org/10.1086/605433
4. Suzuki Y, Wang X, Jortner BS, Payne L, Ni Y, et al. Removal of
Toxoplasma gondii cysts from the brain by perforin-mediated activity of CD8+ T cells. Am J Pathol 2010;176(4):1607-1613
https//doi.org/10.2353/ajpath.2010.090825
5. Torres L, Robinson SA, Kim DG, Yan A, Cleland TA, et al.
Toxoplasma gondii alters NMDAR signaling and induces signs of Alzheimer’s disease in wild-type, C57BL/6 mice. J Neuroinflammation 2018;15(1):57
https//doi.org/10.1186/s12974-018-1086-8
6. Evangelista FF, Costa-Ferreira W, Mantelo FM, Beletini LF, de Souza AH, et al. Rosuvastatin revert memory impairment and anxiogenic-like effect in mice infected with the chronic ME-49 strain of
Toxoplasma gondii
. PLoS One 2021;16(4):e0250079
https//doi.org/10.1371/journal.pone.0250079
7. Hegazy MK, Saleh NE, Aboukamar WA. Detection of chronic toxoplasmosis in the brain of mice using loop-mediated isothermal amplification (LAMP) and conventional PCR. Exp Parasitol 2023;251:108556
https//doi.org/10.1016/j.exppara.2023.108556
9. Bezerra ECM, Dos Santos SV, Dos Santos TCC, de Andrade HFJ, Meireles LR. Behavioral evaluation of BALB/c (Mus musculus) mice infected with genetically distinct strains of
Toxoplasma gondii.
. Microb Pathog 2019;126:279-286
https//doi.org/10.1016/j.micpath.2018.11.021
10. Kikuchi T, Furuta T, Kojima S. Kinetics of the nucleoside triphosphate hydrolase of
Toxoplasma gondii in mice with acute and chronic toxoplasmosis. Ann Trop Med Parasitol 2002;96(1):35-41
https//doi.org/10.1179/000349802125000493
11. Rahumatullah A, Khoo B, Noordin R. Development of triplex real-time PCR and detection of
Toxoplasma gondii DNA in infected mice tissues and spiked human samples. Trop biomed 2015;32(2):376-385.
12. Piña-Vázquez C, Saavedra R, Herion P. A quantitative competitive PCR method to determine the parasite load in the brain of
Toxoplasma gondii-infected mice. Parasitol Int 2008;57(3):347-353
https//doi.org/10.1016/j.parint.2008.03.001
13. Yoon KW, Chu KB, Kang HJ, Kim MJ, Eom GD, et al. Mucosal administration of recombinant baculovirus displaying
Toxoplasma gondii ROP4 confers protection against
T. gondii challenge infection in mice. Front Cell Infect Microbiol 2021;11:735191
https//doi.org/10.3389/fcimb.2021.735191
14. Kang HJ, Lee SH, Kim MJ, Chu KB, Lee DH, et al. Influenza virus-like particles presenting both
Toxoplasma gondii ROP4 and ROP13 enhance protection against
T. gondii infection. Pharmaceutics 2019;11(7):342
https//doi.org/10.3390/pharmaceutics11070342
17. Karshima SN, Karshima MN. Human
Toxoplasma gondii infection in Nigeria: a systematic review and meta-analysis of data published between 1960 and 2019. BMC Public Health 2020;20(1):877
https//doi.org/10.1186/s12889-020-09015-7
19. Rostami A, Karanis P, Fallahi S. Advances in serological, imaging techniques and molecular diagnosis of
Toxoplasma gondii infection. Infection 2018;46(3):303-315
https//doi.org/10.1007/s15010-017-1111-3
20. Ferra BT, Holec-Gąsior L, Gatkowska J, Dziadek B, Dzitko K, et al. The first study on the usefulness of recombinant tetravalent chimeric proteins containing fragments of SAG2, GRA1, ROP1 and AMA1 antigens in the detection of specific anti-
Toxoplasma gondii antibodies in mouse and human sera. PLoS One 2019;14(6):e0217866
https//doi.org/10.1371/journal.pone.0217866
21. Attias M, Teixeira DE, Benchimol M, Vommaro RC, Crepaldi PH, et al. The life-cycle of
Toxoplasma gondii reviewed using animations. Parasit Vectors 2020;13(1):588
https//doi.org/10.1186/s13071-020-04445-z
23. Di Cristina M, Marocco D, Galizi R, Proietti C, Spaccapelo R, et al. Temporal and spatial distribution of
Toxoplasma gondii differentiation into bradyzoites and tissue cyst formation in vivo. Infect Immun 2008;76(8):3491-3501
https//doi.org/10.1128/iai.00254-08
24. Suzuki Y, Lutshumba J, Chen KC, Abdelaziz MH, Sa Q, et al. IFN-γ production by brain-resident cells activates cerebral mRNA expression of a wide spectrum of molecules critical for both innate and T cell-mediated protective immunity to control reactivation of chronic infection with
Toxoplasma gondii.
. Front Cell Infect Microbiol 2023;13:1110508
https//doi.org/10.3389/fcimb.2023.1110508
26. Schlüter D, Kaefer N, Hof H, Wiestler OD, Deckert-Schlüter M. Expression pattern and cellular origin of cytokines in the normal and
Toxoplasma gondii-infected murine brain. Am J Pathol 1997;150(3):1021-1035.
28. Kim MJ, Lee SH, Kang HJ, Chu KB, Park H, et al. Virus-like particle vaccine displaying
Toxoplasma gondii apical membrane antigen 1 induces protection against
T. gondii ME49 infection in mice. Microb Pathog 2020;142:104090
https//doi.org/10.1016/j.micpath.2020.104090