2. Jahangeer M, Mahmood Z, Munir N, Waraich UEA, Tahir IM, et al.
Naegleria fowleri: sources of infection, pathophysiology, diagnosis, and management; a review. Clin Exp Pharmacol Physiol 2020;47(2):199-212
https://doi.org/10.1111/1440-1681.13192
3. Hall AD, Kumar JE, Golba CE, Luckett KM, Bryant WK. Primary amebic meningoencephalitis: a review of
Naegleria fowleri and analysis of successfully treated cases. Parasitol Res 2024;123(1):84
https://doi.org/10.1007/s00436-023-08094-w
6. Herman EK, Greninger A, van der Giezen M, Ginger ML, Ramirez-Macias I, et al. Genomics and transcriptomics yields a system-level view of the biology of the pathogen
Naegleria fowleri. BMC Biol 2021;19(1):142
https://doi.org/10.1186/s12915-021-01078-1
7. Serrano-Luna J, Cervantes-Sandoval I, Tsutsumi V, Shibayama M. A biochemical comparison of proteases from pathogenic
Naegleria fowleri and non-pathogenic
Naegleria gruberi. J Eukaryot Microbiol 2007;54(5):411-417
https://doi.org/10.1111/j.1550-7408.2007.00280.x
8. Cervantes-Sandoval I, Jesús Serrano-Luna J, Pacheco-Yépez J, Silva-Olivares A, Tsutsumi V, et al. Differences between
Naegleria fowleri and
Naegleria gruberi in expression of mannose and fucose glycoconjugates. Parasitol Res 2010;106(3):695-701
https://doi.org/10.1007/s00436-010-1727-z
9. Son DH, Kim EJ, Matin A, Jung SY. Interaction between
Naegleria fowleri and pathogenic
Escherichia coli by mannose and changes in
N. fowleri protease. Parasitol Res 2022;121(6):1805-1809
https://doi.org/10.1007/s00436-022-07513-8
10. Zysset-Burri DC, Müller N, Beuret C, Heller M, Schürch N, et al. Genome-wide identification of path-ogenicity factors of the free-living amoeba
Naegleria fowleri. BMC Genomics 2014;15(1):496
https://doi.org/10.1186/1471-2164-15-496
11. Abo El-Maaty DA, Hamza RS. Primary amoebic meningoencephalitis caused by Naegleria fowleri. Parasitol Uni J 2012;5(2):93-104.
12. Oh YH, Jeong SR, Kim JH, Song KJ, Kim K, et al. Cytopathic changes and pro-inflammatory cytokines induced by
Naegleria fowleri trophozoites in rat microglial cells and protective effects of an anti-Nfa1 antibody. Parasite Immunol 2005;27(12):453-459
https://doi.org/10.1111/j.1365-3024.2005.00799.x
13. Song KJ, Jeong SR, Park S, Kim K, Kwon MH, et al.
Naegleria fowleri: functional expression of the Nfa1 protein in transfected
Naegleria gruberi by promoter modification. Exp Parasitol 2006;112(2):115-120
https://doi.org/10.1016/j.exppara.2005.10.004
15. Shin HJ, Cho MS, Jung SY, Kim HI, Park S, et al. Molecular cloning and characterization of a gene encoding a 13.1 kDa antigenic protein of
Naegleria fowleri. J Eukaryot Microbiol 2001;48(6):713-717
https://doi.org/10.1111/j.1550-7408.2001.tb00211.x
18. Klippenstein GL, Van Riper DA, Oostrom EA. A comparative study of the oxygen transport proteins of
Dendrostomum pyroides: isolation and characterization of hemerythrins from muscle, the vascular system, and the coelom. J Biol Chem 1972;247(18):5959-5963.
20. Kang SY, Song KJ, Jeong SR, Kim JH, Park S, et al. Role of the Nfa1 protein in pathogenic
Naegleria fowleri cocultured with CHO target cells. Clin Diagn Lab Immunol 2005;12(7):873-876
https://doi.org/10.1128/CDLI.12.7.873-876.2005
21. Cho MS, Jung SY, Park S, Kim K, Kim HI, et al. Immunological characterizations of a cloned 13.1-kilodalton protein from pathogenic
Naegleria fowleri. Clin Diagn Lab Immmunol 2003;10(5):954-959
https://doi.org/10.1128/cdli.10.5.954-959.2003
22. Jeong SR, Kang SY, Lee SC, Song KJ, Im KI, et al. Decreasing effect of an anti-Nfa1 polyclonal antibody on the in vitro cytotoxicity of pathogenic
Naegleria fowleri. Korean J Parasitol 2004;42(1):35-40
https://doi.org/10.3347/kjp.2004.42.1.35
23. Lee YJ, Kim JH, Jeong SR, Song KJ, Kim K, et al. Production of Nfa1-specific monoclonal antibodies that influences the in vitro cytotoxicity of
Naegleria fowleri trophozoites on microglial cells. Parasitol Res 2007;101(5):1191-1196
https://doi.org/10.1007/s00436-007-0600-1
27. Jung SY, Kim JH, Song KJ, Lee YJ, Kwon MH, et al. Gene silencing of
nfa1 affects the in vitro cytotoxicity of
Naegleria fowleri in murine macrophages. Mol Biochem Parasitol 2009;165(1):87-93
https://doi.org/10.1016/j.molbiopara.2009.01.007
29. Jeong SR, Lee SC, Song KJ, Park S, Kim K, et al. Expression of the nfa1 gene cloned from pathogenic
Naegleria fowleri in nonpathogenic
N. gruberi enhances cytotoxicity against CHO target cells in vitro. Infect Immun 2005;73(7):4098-4105
https://doi.org/10.1128/IAI.73.7.4098-4105.2005
31. Cerva L.
Acanthamoeba culbertsoni and
Naegleria fowleri: occurrence of antibodies in man. J Hyg Epidemiol Microbiol Immunol 1989;33(1):99-103.
33. Park KM, Ryu JS, Im KI. Blastogenic responses of splenic lymphocytes to
Naegleria fowleri lysates and T-cell mitogen in mice with primary amoebic meningoencephalitis. Korean J Parasitol 1987;25(1):1-6
https://doi.org/10.3347/kjp.1987.25.1.1
35. Thong YH, Ferrante A, Rowan-Kelly B, O’Keefe D. Immunization with live amoebae, amoebic lysate and culture supernatant in experimental
Naegleria meningoencephalitis. Trans R Soc Trop Med Hyg 1980;74(5):570-576
https://doi.org/10.1016/0035-9203(80)90141-8
40. Ahmed SB, Touihri L, Chtourou Y, Dellagi K, Bahloul C. DNA based vaccination with a cocktail of plasmids encoding immunodominant
Leishmania (
Leishmania) major antigens confers full protection in BALB/c mice. Vaccine 2009;27(1):99-106
https://doi.org/10.1016/j.vaccine.2008.10.013
41. Martínez MB, Rodríguez MA, García-Rivera G, Sánchez T, Hernández-Pando R, et al. A pcDNA-Ehcpadh vaccine against
Entamoeba histolytica elicits a protective Th1-like response in hamster liver. Vaccine 2009;27(31):4176-4186
https://doi.org/10.1016/j.vaccine.2009.04.051
42. Khosroshahi KH, Ghaffarifar F, Sharifi Z, D’Souza S, Dalimi A, et al. Comparing the effect of IL-12 genetic adjuvant and alum non-genetic adjuvant on the efficiency of the cocktail DNA vaccine containing plasmids encoding SAG-1 and ROP-2 of
Toxoplasma gondii. Parasitol Res 2012;111(1):403-411
https://doi.org/10.1007/s00436-012-2852-7
43. Miller AD, Rosman GJ. Improved retroviral vectors for gene transfer and expression. Biotechniques 1989;7(9):980-990.
44. Negri DR, Michelini Z, Bona R, Blasi M, Filati P, et al. Integrase-defective lentiviral-vector based vaccine: a new vector for induction of T cell immunity. Expert Opin Biol Ther 2011;11(6):739-750
https://doi.org/10.1517/14712598.2011.571670
45. Kim JH, Lee SH, Sohn HJ, Lee J, Chwae YJ, et al. The immune response induced by DNA vaccine expressing
nfa1 gene against
Naegleria fowleri. Parasitol Res 2012;111(6):2377-2384
https://doi.org/10.1007/s00436-012-3093-5
46. Kim JH, Sohn HJ, Lee J, Yang HJ, Chwae YJ, et al. Vaccination with lentiviral vector expressing the
nfa1 gene confers a protective immune response to mice infected with
Naegleria fowleri. Clin Vaccine Immunol 2013;20(7):1055-1060
https://doi.org/10.1128/CVI.00210-13
50. Lee J, Yoo JK, Sohn HJ, Kang HK, Kim D, et al. Protective immunity against
Naegleria fowleri infection on mice immunized with the rNfa1 protein using mucosal adjuvants. Parasitol Res 2015;114(4):1377-1385
https://doi.org/10.1007/s00436-015-4316-3
51. Song KJ, Song KH, Na BK, Kim JH, Kwon DH, et al. Molecular cloning and characterization of a cytosolic heat shock protein 70 from
Naegleria fowleri. Parasitol Res 2007;100(5):1083-1089
https://doi.org/10.1007/s00436-006-0404-8
52. Song KJ, Song KH, Kim JH, Sohn HJ, Lee YJ, et al. Heat shock protein 70 of
Naegleria fowleri is important factor for proliferation and in vitro cytotoxicity. Parasitol Res 2008;103(2):313-317
https://doi.org/10.1007/s00436-008-0972-x
53. Sohn HJ, Song KJ, Kang H, Ham AJ, Lee JH, et al. Cellular characterization of actin gene concerned with contact-dependent mechanisms in
Naegleria fowleri. Parasite Immunol 2019;41(8):e12631
https://doi.org/10.1111/pim.12631
54. Kim JH, Yang AH, Sohn HJ, Kim D, Song KJ, et al. Immunodominant antigens in
Naegleria fowleri excretory–secretory proteins were potential pathogenic factors. Parasitol Res 2009;105(6):1675-1681
https://doi.org/10.1007/s00436-009-1610-y
55. Klinkert MQ, Felleisen R, Link G, Ruppel A, Beck E. Primary structure of Sm31/32 diagnostic proteins of
Schistosoma mansoni and their identification as proteases. Mol Biochem Parasitol 1989;33(2):113-122.
57. Lee J, Kim JH, Sohn HJ, Yang HJ, Na BK, et al. Novel cathepsin B and cathepsin B-like cysteine protease of
Naegleria fowleri excretory–secretory proteins and their biochemical properties. Parasitol Res 2014;113(8):2765-2776
https://doi.org/10.1007/s00436-014-3936-3
58. Seong GS, Sohn HJ, Kang H, Seo GE, Kim JH, et al. Production and characterization of monoclonal antibodies against cathepsin B and cathepsin B-Like proteins of
Naegleria fowleri. Exp Parasitol 2017;183:171-177
https://doi.org/10.1016/j.exppara.2017.09.004
61. Carter RF. Primary amoebic meningo-encephalitis: clinical, pathological and epidemiológica features of six fatal cases. J Pathol Bacteriol 1968;96(1):1-25
https://doi.org/10.1002/path.1700960102
64. De Jonckheere J. Growth characteristics, cytopathic effect in cell culture, and virulence in mice of 36 type strains belonging to 19 different
Acanthamoeba spp. Appl Environ Microbiol 1980;39(4):681-685
https://doi.org/10.1128/aem.39.4.681-685.1980
71. Sohn HJ, Kim JH, Shin MH, Song KJ, Shin HJ. The Nf-actin gene is an important factor for food-cup formation and cytotoxicity of pathogenic
Naegleria fowleri. Parasitol Res 2010;106:917-924
https://doi.org/10.1007/s00436-010-1760-y
74. Shibayama M, Serrano-Luna JDJ, Rojas-Hernández S, Campos-Rodríguez R, Tsutsumi V. Interaction of secretory immunoglobulin A antibodies with
Naegleria fowleri trophozoites and collagen type I. Canadian J Microbiol 2003;49(3):164-170
https://doi.org/10.1139/w03-023
75. Han KL, Lee HJ, Shin MH, Shin HJ, Im KI, et al. The involvement of an integrin-like protein and protein kinase C in amoebic adhesion to fibronectin and amoebic cytotoxicity. Parasitol Res 2004;94(1):53-60
https://doi.org/10.1007/s00436-004-1158-9
76. Rocha-Azevedo BD, Jamerson M, Cabral GA, Silva-Filho FC, Marciano-Cabral F.
Acanthamoeba interaction with extracellular matrix glycoproteins: biological and biochemical characterization and role in cytotoxicity and invasiveness. J Eukaryot Microbiol 2009;56(3):270-278
https://doi.org/10.1111/j.1550-7408.2009.00399.x
77. Gordon VR, Asem EK, Vodkin MH, McLaughlin GL.
Acanthamoeba binds to extracellular matrix proteins in vitro. Investig Ophthalmol Vis Sci 1993;34(3):658-662.
79. Khan NA, Wang Y, Kim KJ, Chung JW, Wass CA, et al. Cytotoxic necrotizing factor-1 contributes to
Escherichia coli K1 invasion of the central nervous system. J Biol Chem 2002;277(18):15607-15612
https://doi.org/10.1074/jbc.M112224200
81. Neff R, Ray S, Benton W, Wilborn M. Induction of synchronous encystment (differentiation) in
Acanthamoeba sp. Method Cell Biol 1964;1:55-83
https://doi.org/10.1242/jcs.91.3.389
84. Phan IQ, Rice CA, Craig J, Noorai RE, McDonald JR, et al. The transcriptome of
Balamuthia mandrillaris trophozoites for structure-guided drug design. Sci Rep 2021;11(1):21664
https://doi.org/10.1038/s41598-021-99903-8
85. Siddiqui R, Rajendran K, Abdella B, Ayub Q, Lim SY, et al.
Naegleria fowleri: differential genetic expression following treatment with Hesperidin conjugated with silver nanoparticles using RNA-Seq. Parasitol Res 2020;119:2351-2358
https://doi.org/10.1007/s00436-020-06711-6
86. Sohn HJ, Kim JH, Kim K, Park S, Shin HJ. De novo transcriptome profiling of
Naegleria fowleri trophozoites and cysts via RNA sequencing. Pathogens 2023;12(2):174
https://doi.org/10.3390/pathogens12020174
87. Tavares P, Rigothier MC, Khun H, Roux P, Huerre M, et al. Roles of cell adhesion and cytoskeleton activity in
Entamoeba histolytica pathogenesis: a delicate balance. Infect Immun 2005;73(3):1771-1778
https://doi.org/10.1128/IAI.73.3.1771-1778.2005
89. Saito-Nakano Y, Wahyuni R, Nakada-Tsukui K, Tomii K, Nozaki T. Rab7D small GTPase is involved in phago-, trogocytosis and cytoskeletal reorganization in the enteric protozoan
Entamoeba histolytica. Cell Microbiol 2021;23(1):e13267
https://doi.org/10.1111/cmi.13267
91. Bouyer S, Rodier MH, Guillot A, Hechard Y.
Acanthamoeba castellanii: proteins involved in actin dynamics, glycolysis, and proteolysis are regulated during encystation. Exp Parasitol 2009;123(1):90-94
https://doi.org/10.1016/j.exppara.2009.06.006
92. Gonzalez-Robles A, Salazar-Villatoro L, Omana-Molina M, Lorenzo-Morales J, Martinez-Palomo A.
Acanthamoeba royreba: morphological features and in vitro cytopathic effect. Exp Parasitol 2013;133(4):369-375
https://doi.org/10.1016/j.exppara.2013.01.011
93. Didry D, Carlier MF, Pantaloni D. Synergy between actin depolymerizing factor/cofilin and profilin in increasing actin filament turnover. J Biol Chem 1998;273(40):25602-25611
https://doi.org/10.1074/jbc.273.40.25602
94. Ressad F, Didry D, Egile C, Pantaloni D, Carlier MF. Control of actin filament length and turnover by actin depolymerizing factor (ADF/cofilin) in the presence of capping proteins and ARP2/3 complex. J Biol Chem 1999;274(30):20970-20976
https://doi.org/10.1074/jbc.274.30.20970