1. Rook GA. Hygiene and other early childhood influences on the subsequent function of the immune system.
Dig Dis 2011;29(2):144-153
https://doi.org/10.1159/000323877
4. Aranzamendi C, Sofronic-Milosavljevic L, Pinelli E. Helminths: immunoregulation and inflammatory diseases-which side are
Trichinella spp. and
Toxocara spp. on?
J Parasitol Res 2013;2013:329438
https://doi.org/10.1155/2013/329438
5. Sofronic-Milosavljevic L, Ilic N, Pinelli E, Gruden-Movsesijan A. Secretory products of
Trichinella spiralis muscle larvae and immunomodulation: implication for autoimmune diseases, allergies, and malignancies.
J Immunol Res 2015;2015:523875
https://doi.org/10.1155/2015/523875
6. White MPJ, McManus CM, Maizels RM. Regulatory T-cells in helminth infection: induction, function and therapeutic potential.
Immunology 2020;160(3):248-260
https://doi.org/10.1111/imm.13190
9. Radovic I, Gruden-Movsesijan A, Ilic N, Cvetkovic J, Mojsilovic S, et al. Immunomodulatory effects of
Trichinella spiralis-derived excretory-secretory antigens.
Immunol Res 2015;61(3):312-325
https://doi.org/10.1007/s12026-015-8626-4
11. Kang SA, Yu HS. Proteome identification of common immunological proteins of two nematode parasites.
Parasites Hosts Dis 2024;62(3):342-350
https://doi.org/10.3347/PHD.24027
12. Cho MK, Park MK, Kang SA, Choi SH, Ahn SC, et al.
Trichinella spiralis infection suppressed gut inflammation with CD4 (+)CD25(+)Foxp3(+) T cell recruitment.
Korean J Parasitol 2012;50(4):385-390
https://doi.org/10.3347/kjp.2012.50.4.385
14. Ma X, Liu D, Yu W, Han C. Alleviation of rheumatoid arthritis by inducing IDO expression with
Trichinella spiralis recombinant protein 43.
J Immunol Res 2024;2024:8816919
https://doi.org/10.1155/2024/8816919
15. Shi W, Xu Q, Liu Y, Hao Z, Liang Y, et al. Immunosuppressive ability of
Trichinella spiralis adults can ameliorate type 2 inflammation in a murine allergy model.
J Infect Dis 2024;229(4):1215-1228
https://doi.org/10.1093/infdis/jiad518
16. Zhen JB, Zhang JP, Sun F, Lin LH, Zhang YH, et al. Intervention effects of
Trichinella spiralis excretory-secretory antigens on allergic asthma in mice.
Int Immunopharmacol 2023;119:110101
https://doi.org/10.1016/j.intimp.2023.110101
19. Yang Y, He Y, Yang X, Qiao Y, Yi G, et al. Effect of
Trichinella spiralis-derived antigens on nonalcoholic fatty liver disease induced by high-fat diet in mice.
ACS Pharmacol Transl Sci 2024;7(2):432-444
https://doi.org/10.1021/acsptsci.3c00276
20. Motomura Y, Wang H, Deng Y, El-Sharkawy RT, Verdu EF, et al. Helminth antigen-based strategy to ameliorate inflammation in an experimental model of colitis.
Clin Exp Immunol 2009;155(1):88-95
https://doi.org/10.1111/j.1365-2249.2008.03805.x
21. Kang SA, Park MK, Cho MK, Park SK, Jang MS, et al. Parasitic nematode-induced CD4+Foxp3+T cells can ameliorate allergic airway inflammation.
PLoS Negl Trop Dis 2014;8(12):e3410
https://doi.org/10.1371/journal.pntd.0003410
22. Kang SA, Park MK, Park SK, Choi JH, Lee DI, et al. Adoptive transfer of
Trichinella spiralis-activated macrophages can ameliorate both Th1- and Th2-activated inflammation in murine models.
Sci Rep 2019;9(1):6547
https://doi.org/10.1038/s41598-019-43057-1
23. Sun S, Li H, Yuan Y, Wang L, He W, et al. Preventive and therapeutic effects of
Trichinella spiralis adult extracts on allergic inflammation in an experimental asthma mouse model.
Parasit Vectors 2019;12(1):326
https://doi.org/10.1186/s13071-019-3561-1
24. Aimulajiang K, Chu W, Liao S, Wen Z, He R, et al. Succinate coenzyme A ligase beta-like protein from
Trichinella spiralis is a potential therapeutic molecule for allergic asthma.
Immun Inflamm Dis 2024;12(6):e1321
https://doi.org/10.1002/iid3.1321
25. Thammasonthijarern N, Boonnak K, Reamtong O, Krasae T, Thankansakul J, et al. Amelioration of ovalbumin-induced lung inflammation in a mouse model by
Trichinella spiralis novel cystatin.
Vet World 2023;16(11):2366-2373
https://doi.org/10.14202/vetworld.2023.2366-2373
26. Yuthithum T, Phuphisut O, Reamtong O, Kosoltanapiwat N, Chaimon S, et al. Identification of the protease inhibitory domain of
Trichinella spiralis novel cystatin (TsCstN).
Parasites Hosts Dis 2024;62(3):330-341
https://doi.org/10.3347/PHD.24026
27. Aranzamendi C, de Bruin A, Kuiper R, Boog CJ, van Eden W, et al. Protection against allergic airway inflammation during the chronic and acute phases of
Trichinella spiralis infection.
Clin Exp Allergy 2013;43(1):103-115
https://doi.org/10.1111/cea.12042
28. Long SR, Shang WX, Jiang M, Li JF, Liu RD, et al. Preexisting
Trichinella spiralis infection attenuates the severity of
Pseudomonas aeruginosa-induced pneumonia.
PLoS Negl Trop Dis 2022;16(5):e0010395
https://doi.org/10.1371/journal.pntd.0010395
29. Chu KB, Lee HA, Kang HJ, Moon EK, Quan FS. Preliminary
Trichinella spiralis infection ameliorates subsequent RSV infection-induced inflammatory response.
Cells 2020;9(5):1314
https://doi.org/10.3390/cells9051314
31. Cao Z, Wang J, Liu X, Liu Y, Li F, et al. Helminth alleviates COVID-19-related cytokine storm in an IL-9-dependent way.
mBio 2024;15(6):e0090524
https://doi.org/10.1128/mbio.00905-24
32. Xiang C, Zhong G, Wang H. IL-9 plays a critical role in helminth-induced protection against COVID-19-related cytokine storms.
mBio 2024;15(7):e0122924
https://doi.org/10.1128/mbio.01229-24
33. Du L, Liu L, Yu Y, Shan H, Li L.
Trichinella spiralis excretory-secretory products protect against polymicrobial sepsis by suppressing MyD88 via mannose receptor.
Biomed Res Int 2014;2014:898646
https://doi.org/10.1155/2014/898646
34. Li H, Qiu D, Yang H, Yuan Y, Wu L, et al. Therapeutic efficacy of excretory-secretory products of
Trichinella spiralis adult worms on sepsis-induced acute lung injury in a mouse model.
Front Cell Infect Microbiol 2021;11:653843
https://doi.org/10.3389/fcimb.2021.653843
35. Wei LY, Jiang AQ, Jiang R, Duan SY, Xu X, et al. Protective effects of recombinant 53-kDa protein of
Trichinella spiralis on acute lung injury in mice via alleviating lung pyroptosis by promoting M2 macrophage polarization.
Innate Immun 2021;27(4):313-323
https://doi.org/10.1177/17534259211013397
36. Azimi M, Ghabaee M, Moghadasi AN, Noorbakhsh F, Izad M. Immunomodulatory function of Treg-derived exosomes is impaired in patients with relapsing-remitting multiple sclerosis.
Immunol Res 2018;66(4):513-520
https://doi.org/10.1007/s12026-018-9008-5
38. Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains.
Brain 2009;132(Pt 5):1175-1189
https://doi.org/10.1093/brain/awp070
40. Tzartos JS, Friese MA, Craner MJ, Palace J, Newcombe J, et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis.
Am J Pathol 2008;172(1):146-155
https://doi.org/10.2353/ajpath.2008.070690
41. Verma ND, Lam AD, Chiu C, Tran GT, Hall BM, et al. Multiple sclerosis patients have reduced resting and increased activated CD4+CD25+FOXP3+ T regulatory cells.
Sci Rep 2021;11(1):10476
https://doi.org/10.1038/s41598-021-88448-5
43. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis.
J Exp Med 2004;199(7):971-979
https://doi.org/10.1084/jem.20031579
44. Gruden-Movsesijan A, Ilic N, Mostarica-Stojkovic M, Stosic-Grujicic S, Milic M, et al. Mechanisms of modulation of experimental autoimmune encephalomyelitis by chronic
Trichinella spiralis infection in Dark Agouti rats.
Parasite Immunol 2010;32(6):450-459
https://doi.org/10.1111/j.1365-3024.2010.01207.x
45. Gruden-Movsesijan A, Ilic N, Mostarica-Stojkovic M, Stosic-Grujicic S, Milic M, et al.
Trichinella spiralis: modulation of experimental autoimmune encephalomyelitis in DA rats.
Exp Parasitol 2008;118(4):641-647
https://doi.org/10.1016/j.exppara.2007.12.003
46. Kuijk LM, Klaver EJ, Kooij G, van der Pol SM, Heijnen P, et al. Soluble helminth products suppress clinical signs in murine experimental autoimmune encephalomyelitis and differentially modulate human dendritic cell activation.
Mol Immunol 2012;51(2):210-218
https://doi.org/10.1016/j.molimm.2012.03.020
47. Sofronic-Milosavljevic LJ, Radovic I, Ilic N, Majstorovic I, Cvetkovic J, et al. Application of dendritic cells stimulated with
Trichinella spiralis excretory-secretory antigens alleviates experimental autoimmune encephalomyelitis.
Med Microbiol Immunol 2013;202(3):239-249
https://doi.org/10.1007/s00430-012-0286-6
49. Saunders KA, Raine T, Cooke A, Lawrence CE. Inhibition of autoimmune type 1 diabetes by gastrointestinal helminth infection.
Infect Immun 2007;75(1):397-407
https://doi.org/10.1128/IAI.00664-06
50. Hübner MP, Shi Y, Torrero MN, Mueller E, Larson D, et al. Helminth protection against autoimmune diabetes in nonobese diabetic mice is independent of a type 2 immune shift and requires TGF-β.
J Immunol 2012;188(2):559-568
https://doi.org/10.4049/jimmunol.1100335
51. Kotake S, Yago T, Kobashigawa T, Nanke Y. The plasticity of Th17 cells in the pathogenesis of rheumatoid arthritis.
J Clin Med 2017;6(7):67
https://doi.org/10.3390/jcm6070067
52. Yago T, Nanke Y, Kawamoto M, Kobashigawa T, Yamanaka H, et al. IL-23 and Th17 disease in inflammatory arthritis.
J Clin Med 2017;6(9):81
https://doi.org/10.3390/jcm6090081
53. Tahmasebinia F, Pourgholaminejad A. The role of Th17 cells in auto-inflammatory neurological disorders.
Prog Neuropsychopharmacol Biol Psychiatry 2017;79(Pt B):408-416
https://doi.org/10.1016/j.pnpbp.2017.07.023
54. Cui H, Wang N, Li H, Bian Y, Wen W, et al. The dynamic shifts of IL-10-producing Th17 and IL-17-producing Treg in health and disease: a crosstalk between ancient “Yin-Yang” theory and modern immunology.
Cell Commun Signal 2024;22(1):99
https://doi.org/10.1186/s12964-024-01505-0
55. Astry B, Venkatesha SH, Moudgil KD. Involvement of the IL-23/IL-17 axis and the Th17/Treg balance in the pathogenesis and control of autoimmune arthritis.
Cytokine 2015;74(1):54-61
https://doi.org/10.1016/j.cyto.2014.11.020
56. Eissa MM, Mostafa DK, Ghazy AA, El Azzouni MZ, Boulos LM, et al. Anti-arthritic activity of
Schistosoma mansoni and
Trichinella spiralis derived-antigens in adjuvant arthritis in rats: role of FOXP3 Treg cells.
PLoS One 2016;11(11):e0165916
https://doi.org/10.1371/journal.pone.0165916
57. Cheng Y, Zhu X, Wang X, Zhuang Q, Huyan X, et al.
Trichinella spiralis infection mitigates collagen-induced arthritis via programmed death 1-mediated immunomodulation.
Front Immunol 2018;9:1566
https://doi.org/10.3389/fimmu.2018.01566
59. Zhang D, Jiang W, Yu Y, Huang J, Jia Z, et al.
Trichinella spiralis paramyosin alleviates collagen-induced arthritis in mice by modulating CD4(+) T cell differentiation.
Int J Mol Sci 2024;25(12):6706
https://doi.org/10.3390/ijms25126706
60. Cheng Y, Yu Y, Zhuang Q, Wang L, Zhan B, et al. Bone erosion in inflammatory arthritis is attenuated by
Trichinella spiralis through inhibiting M1 monocyte/macrophage polarization.
iScience 2022;25(3):103979
https://doi.org/10.1016/j.isci.2022.103979
61. Xu J, Wu L, Yu P, Liu M, Lu Y. Effect of two recombinant
Trichinella spiralis serine protease inhibitors on TNBS-induced experimental colitis of mice.
Clin Exp Immunol 2018;194(3):400-413
https://doi.org/10.1111/cei.13199
64. Zhao Y, Liu MY, Wang XL, Liu XL, Yang Y, et al. Modulation of inflammatory bowel disease in a mouse model following infection with
Trichinella spiralis.
Vet Parasitol 2013;194(2–4):211-216
https://doi.org/10.1016/j.vetpar.2013.01.058
65. Xu J, Pang Z, Zhang J, Xia S, Wang R, et al. Regulatory effects of
Trichinella spiralis and a serine protease inhibitor on the endoplasmic reticulum stress response of intestinal epithelial cells.
Vet Res 2022;53(1):18
https://doi.org/10.1186/s13567-022-01036-x
66. Zhen J, Lin L, Li Z, Sun F, Han Y, et al. Regulatory effects of
Trichinella spiralis serpin-type serine protease inhibitor on endoplasmic reticulum stress and oxidative stress in host intestinal epithelial cells.
Vet Res 2024;55(1):78
https://doi.org/10.1186/s13567-024-01334-6
67. Ma ZR, Li ZL, Zhang N, Lu B, Li XW, et al. Inhibition of GSDMD-mediated pyroptosis triggered by
Trichinella spiralis intervention contributes to the alleviation of DSS-induced ulcerative colitis in mice.
Parasit Vectors 2023;16(1):280
https://doi.org/10.1186/s13071-023-05857-3
68. Long SR, Shang WX, Zhang HR, Jiang M, Wang JJ, et al.
Trichinella-derived protein ameliorates colitis by altering the gut microbiome and improving intestinal barrier function.
Int Immunopharmacol 2024;127:111320
https://doi.org/10.1016/j.intimp.2023.111320
69. Li C, Liu Y, Liu X, Bai X, Jin X, et al. The gut microbiota contributes to changes in the host immune response induced by
Trichinella spiralis.
PLoS Negl Trop Dis 2023;17(8):e0011479
https://doi.org/10.1371/journal.pntd.0011479
70. Li J, Wang X, Wang Q, Hu Y, Wang S, et al. Galectin from
Trichinella spiralis alleviates DSS-induced colitis in mice by regulating the intestinal microbiota.
Vet Res 2024;55(1):3
https://doi.org/10.1186/s13567-023-01262-x
71. Sun XM, Hao CY, Wu AQ, Luo ZN, El-Ashram S, et al.
Trichinella spiralis-induced immunomodulation signatures on gut microbiota and metabolic pathways in mice.
PLoS Pathog 2024;20(1):e1011893
https://doi.org/10.1371/journal.ppat.1011893
72. Yang X, Yang Y, Wang Y, Zhan B, Gu Y, et al. Excretory/secretory products from
Trichinella spiralis adult worms ameliorate DSS-induced colitis in mice.
PLoS One 2014;9(5):e96454
https://doi.org/10.1371/journal.pone.0096454
73. Du L, Tang H, Ma Z, Xu J, Gao W, et al. The protective effect of the recombinant 53-kDa protein of
Trichinella spiralis on experimental colitis in mice.
Dig Dis Sci 2011;56(10):2810-2817
https://doi.org/10.1007/s10620-011-1689-8
74. Jin X, Bai X, Zhao Y, Dong Z, Pang J, et al. Nrf2 participates in M2 polarization by
Trichinella spiralis to alleviate TNBS-induced colitis in mice.
Front Immunol 2021;12:698494
https://doi.org/10.3389/fimmu.2021.698494
75. Wang Z, Hao C, Zhuang Q, Zhan B, Sun X, et al. Excretory/secretory products from
Trichinella spiralis adult worms attenuated DSS-induced colitis in mice by driving PD-1-mediated M2 macrophage polarization.
Front Immunol 2020;11:563784
https://doi.org/10.3389/fimmu.2020.563784
76. Yan SW, Zhang R, Guo X, Wang BN, Long SR, et al.
Trichinella spiralis dipeptidyl peptidase 1 suppressed macrophage cytotoxicity by promoting M2 polarization via the STAT6/PPARgamma pathway.
Vet Res 2023;54(1):77
https://doi.org/10.1186/s13567-023-01209-2
78. Yang Y, Liu L, Liu X, Zhang Y, Shi H, et al. Extracellular vesicles derived from
Trichinella spiralis muscle larvae ameliorate TNBS-induced colitis in mice.
Front Immunol 2020;11:1174
https://doi.org/10.3389/fimmu.2020.01174
80. Song YY, Lu QQ, Han LL, Yan SW, Zhang XZ, et al. Proteases secreted by
Trichinella spiralis intestinal infective larvae damage the junctions of the intestinal epithelial cell monolayer and mediate larval invasion.
Vet Res 2022;53(1):19
https://doi.org/10.1186/s13567-022-01032-1
81. Wang R, Zhang Y, Zhen J, Zhang J, Pang Z, et al. Effects of exosomes derived from
Trichinella spiralis infective larvae on intestinal epithelial barrier function.
Vet Res 2022;53(1):87
https://doi.org/10.1186/s13567-022-01108-y
83. Tong M, Yang X, Liu H, Ge H, Huang G, et al. The
Trichinella spiralis-derived antigens alleviate HFD-induced obesity and inflammation in mice.
Int Immunopharmacol 2023;117:109924
https://doi.org/10.1016/j.intimp.2023.109924
84. Tong M, Yang X, Qiao Y, Liu G, Ge H, et al. Serine protease inhibitor from the muscle larval
Trichinella spiralis ameliorates non-alcoholic fatty liver disease in mice via anti-inflammatory properties and gut-liver crosstalk.
Biomed Pharmacother 2024;172:116223
https://doi.org/10.1016/j.biopha.2024.116223
85. Yang Y, He Y, Yi G, Wang M, Guo Z, et al. Excretory/secretory antigens from
Trichinella spiralis muscle larvae ameliorate HFD-induced non-alcoholic steatohepatitis via driving macrophage anti-inflammatory activity.
Int Immunopharmacol 2024;142(Pt A):113103
https://doi.org/10.1016/j.intimp.2024.113103