3. Murhandarwati EE, Fuad A, Sulistyawati , Wijayanti MA, Bia MB, et al. Change of strategy is required for malaria elimination: a case study in Purworejo District, Central Java Province, Indonesia.
Malar J 2015;14:318
https://doi.org/10.1186/s12936-015-0828-7
4. Ahmad RA, Ferdiana A, Surendra H, Sy TR, Herbianto D, et al. A participatory approach to address within-country cross-border malaria: the case of Menoreh Hills in Java, Indonesia.
Malar J 2021;20(1):137
https://doi.org/10.1186/s12936-021-03673-7
5. Hancock PA, Lynd A, Wiebe A, Devine M, Essandoh J, et al. Modelling spatiotemporal trends in the frequency of genetic mutations conferring insecticide target-site resistance in African mosquito malaria vector species.
BMC Biol 2022;20(1):46
https://doi.org/10.1186/s12915-022-01242-1
6. Fišer C, Robinson CT, Malard F. Cryptic species as a window into the paradigm shift of the species concept.
Mol Ecol 2018;27(3):613-635
https://doi.org/10.1111/mec.14486
7. Singh OP, Nanda N, Chandra D, Jha D, Adak T, et al. Modified PCR-based assay for the differentiation of members of
Anopheles fluviatilis complex in consequence of the discovery of a new cryptic species (species V).
Malar J 2020;19(1):96
https://doi.org/10.1186/s12936-020-03172-1
8. Takano KT, Nguyen NT, Nguyen BT, Sunahara T, Yasunami M, et al. Partial mitochondrial DNA sequences suggest the existence of a cryptic species within the Leucosphyrus group of the genus
Anopheles (Diptera: Culicidae), forest malaria vectors, in northern Vietnam.
Parasit Vectors 2010;3:41
https://doi.org/10.1186/1756-3305-3-41
9. Khazal RM, Flaih MH, Kadhim MK, Hussein KR. Genetic diversity of
Leishmania major isolated from different dermal lesions using ITS2 region.
Acta Parasitol 2024;69(1):831-838
https://doi.org/10.1007/s11686-024-00817-y
11. Tessema S, Wesolowski A, Chen A, Murphy M, Wilheim J, et al. Using parasite genetic and human mobility data to infer local and cross-border malaria connectivity in Southern Africa.
Elife 2019;8:e43510
https://doi.org/10.7554/eLife.43510
12. World Health Organization. Malaria Entomology and Vector Control. World Health Organization. Geneva, Switzerland. 2013, pp 24-32.
13. O’Connor CT, Soepanto A. Illustrated Key to Female Anophelines of Indonesia. Directorate of Communicable Disease, Ministry of Health of the Republic of Indonesia. Jakarta, Indonesia. 1979, pp 5-17.
14. Garjito TA, Widiastuti U, Mujiyono M, Prihatin MT, Widiarti W, et al. Genetic homogeneity of
Anopheles maculatus in Indonesia and origin of a novel species present in Central Java.
Parasit Vectors 2019;12(1):351
https://doi.org/10.1186/s13071-019-3598-1
16. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.
Nucleic Acids Res 1994;22(22):4673-4680
https://doi.org/10.1093/nar/22.22.4673
19. Rejeki DSS, Fuad A, Widartono BS, Murhandarwati EEH, Kusnanto H. Spatiotemporal patterns of malaria at cross-boundaries area in Menoreh Hills, Java, Indonesia.
Malar J 2019;18(1):80
https://doi.org/10.1186/s12936-019-2717-y
20. Ali RSM, Wahid I, Saeung A, Wannasan A, Harbach RE, et al. Genetic and morphological evidence for a new species of the Maculatus Group of
Anopheles subgenus
Cellia (Diptera: Culicidae) in Java, Indonesia.
Parasit Vectors 2019;12(1):107
https://doi.org/10.1186/s13071-019-3358-2
21. Ndoen E, Wild C, Dale P, Sipe N, Dale M. Relationships between anopheline mosquitoes and topography in West Timor and Java, Indonesia.
Malar J 2010;9:242
https://doi.org/10.1186/1475-2875-9-242
24. Bunmee K, Thaenkham U, Saralamba N, Ponlawat A, Zhong D, et al. Population genetic structure of the malaria vector
Anopheles minimus in Thailand based on mitochondrial DNA markers.
Parasit Vectors 2021;14(1):496
https://doi.org/10.1186/s13071-021-04998-7
25. Sarma DK, Prakash A, O’Loughlin SM, Bhattacharyya DR, Mohapatra PK, et al. Genetic population structure of the malaria vector
Anopheles baimaii in north-east India using mitochondrial DNA.
Malar J 2012;11:76
https://doi.org/10.1186/1475-2875-11-76
26. Morgan K, O’Loughlin SM, Chen B, Linton YM, Thongwat D, et al. Comparative phylogeography reveals a shared impact of pleistocene environmental change in shaping genetic diversity within nine
Anopheles mosquito species across the Indo-Burma biodiversity hotspot.
Mol Ecol 2011;20(21):4533-4549
https://doi.org/10.1111/j.1365-294X.2011.05268.x
27. Chaiphongpachara T, Laojun S, Changbunjong T, Sumruayphol S, Suwandittakul N, et al. Genetic diversity, haplotype relationships, and
kdr mutation of malaria
Anopheles vectors in the most
Plasmodium knowlesi-endemic area of Thailand.
Trop Med Infect Dis 2022;7(12):412
https://doi.org/10.3390/tropicalmed7120412
28. Walton C, Somboon P, O’Loughlin SM, Zhang S, Harbach RE, et al. Genetic diversity and molecular identification of mosquito species in the
Anopheles maculatus group using the ITS2 region of rDNA.
Infect Genet Evol 2007;7(1):93-102
https://doi.org/10.1016/j.meegid.2006.05.001
29. Harris C, Morlais I, Churcher TS, Awono-Ambene P, Gouagna LC, et al.
Plasmodium falciparum produce lower infection intensities in local versus foreign
Anopheles gambiae populations.
PLoS One 2012;7(1):e30849
https://doi.org/10.1371/journal.pone.0030849
30. Main BJ, Lee Y, Ferguson HM, Kreppel KS, Kihonda A, et al. The genetic basis of host preference and resting behavior in the major African malaria vector,
Anopheles arabiensis.
PLoS Genet 2016;12(9):e1006303
https://doi.org/10.1371/journal.pgen.1006303
31. Djogbénou L, Chandre F, Berthomieu A, Dabiré R, Koffi A, et al. Evidence of introgression of the ace-1(R) mutation and of the
ace-1 duplication in West African
Anopheles gambiae s. s.
PLoS One 2008;3(5):e2172
https://doi.org/10.1371/journal.pone.0002172
32. Weeraratne TC, Surendran SN, Walton C, Karunaratne SHPP. Genetic diversity and population structure of malaria vector mosquitoes
Anopheles subpictus,
Anopheles peditaeniatus, and
Anopheles vagus in five districts of Sri Lanka.
Malar J 2018;17(1):271
https://doi.org/10.1186/s12936-018-2419-x
33. Davidson JR, Wahid I, Sudirman R, Small ST, Hendershot AL, et al. Molecular analysis reveals a high diversity of
Anopheles species in Karama, West Sulawesi, Indonesia.
Parasit Vectors 2020;13(1):379
https://doi.org/10.1186/s13071-020-04252-6
34. Chen B, Harbach RE, Walton C, He Z, Zhong D, et al. Population genetics of the malaria vector
Anopheles aconitus in China and Southeast Asia.
Infect Genet Evol 2012;12(8):1958-1967
https://doi.org/10.1016/j.meegid.2012.08.007
35. Liebman KA, Pinto J, Valle J, Palomino M, Vizcaino L, et al. Novel mutations on the
ace-1 gene of the malaria vector
Anopheles albimanus provide evidence for balancing selection in an area of high insecticide resistance in Peru.
Malar J 2015;14:74
https://doi.org/10.1186/s12936-015-0599-1