Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Page Path

1
results for

"As22U"

Article category

Keywords

Publication year

Authors

"As22U"

Original Article
A 24 kDa Excretory-Secretory Protein of Anisakis simplex Larvae Could Elicit Allergic Airway Inflammation in Mice
Hye-Kyung Park, Min Kyoung Cho, Mi Kyung Park, Shin Ae Kang, Yun Seong Kim, Ki Uk Kim, Min Ki Lee, Mee Sun Ock, Hee Jae Cha, Hak Sun Yu
Korean J Parasitol 2011;49(4):373-380.
Published online December 16, 2011
DOI: https://doi.org/10.3347/kjp.2011.49.4.373

We have reported that a 24 kDa protein (22U homologous; As22U) of Anisakis simplex larvae could elicit several Th2-related chemokine gene expressions in the intestinal epithelial cell line which means that As22U may play a role as an allergen. In order to determine the contribution of As22U to allergic reactions, we treated mice with 6 times intra-nasal application of recombinant As22U (rAs22U). In the group challenged with rAs22U and ovalbumin (OVA), the number of eosinophils in the bronchial alveolar lavage fluid (BALF) was significantly increased, as compared to the group receiving only OVA. In addition, mice treated with rAs22U and OVA showed significantly increased airway hyperresponsiveness. Thus, severe inflammation around the airway and immune cell recruitment was observed in mice treated with rAs22U plus OVA. The levels of IL-4, IL-5, and IL-13 cytokines in the BALF increased significantly after treatment with rAs22U and OVA. Similarly, the levels of anti-OVA specific IgE and IgG1 increased in mice treated with rAs22U and OVA, compared to those treated only with OVA. The Gro-α (CXCL1) gene expression in mouse lung epithelial cells increased instantly after treatment with rAs22U, and allergy-specific chemokines eotaxin (CCL11) and thymus-and-activation-regulated-chemokine (CCL17) gene expressions significantly increased at 6 hr after treatment. In conclusion, rAs22U may induce airway allergic inflammation, as the result of enhanced Th2 and Th17 responses.

Citations

Citations to this article as recorded by  Crossref logo
  • Anisakis pegreffii Extract Induces Airway Inflammation with Airway Remodeling in a Murine Model System
    Jun Ho Choi, Ju Yeong Kim, Myung-hee Yi, Myungjun Kim, Tai-Soon Yong, Kalman Imre
    BioMed Research International.2021;[Epub]     CrossRef
  • Allergen-like Molecules from Parasites
    Ju Yeong Kim, Myung-Hee Yi, Tai-Soon Yong
    Current Protein & Peptide Science.2020; 21(2): 186.     CrossRef
  • Research Note. Prevalence, protein analysis and possible preventive measures against zoonotic anisakid larvae isolated from marine Atherina fish
    M. Samir, M. A. Amin, A. O. Hassan, A. M. Merwad, M. A. I. Awadallah
    Helminthologia.2015; 52(4): 375.     CrossRef
  • Allergenicity of two Anisakis simplex allergens evaluated in vivo using an experimental mouse model
    Min Kyoung Cho, Mi Kyung Park, Shin Ae Kang, Maria Luisa Caballero, Teresa Perez-Pinar, Rosa Rodriguez-Perez, Mee Sun Ock, Hee Jae Cha, Yeon Chul Hong, Hak Sun Yu
    Experimental Parasitology.2014; 146: 71.     CrossRef
  • Alteration of Cytokine Production during Visceral Larva Migrans by Toxascaris leonina in Mice
    Shin Ae Kang, Mi-Kyung Park, Min Kyoung Cho, Hak Sun Yu
    The Korean Journal of Parasitology.2013; 51(5): 583.     CrossRef
  • 9,533 View
  • 76 Download
  • Crossref