Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Page Path

1
results for

"LC3 II"

Article category

Keywords

Publication year

Authors

"LC3 II"

Original Article
Proliferation of Toxoplasma gondii Suppresses Host Cell Autophagy
Youn-Jin Lee, Hyun-Ouk Song, Young-Ha Lee, Jae-Sook Ryu, Myoung-Hee Ahn
Korean J Parasitol 2013;51(3):279-287.
Published online June 30, 2013
DOI: https://doi.org/10.3347/kjp.2013.51.3.279

Autophagy is a process of cytoplasmic degradation of endogenous proteins and organelles. Although its primary role is protective, it can also contribute to cell death. Recently, autophagy was found to play a role in the activation of host defense against intracellular pathogens. The aims of our study was to investigate whether host cell autophagy influences Toxoplasma gondii proliferation and whether autophagy inhibitors modulate cell survival. HeLa cells were infected with T. gondii with and without rapamycin treatment to induce autophagy. Lactate dehydrogenase assays showed that cell death was extensive at 36-48 hr after infection in cells treated with T. gondii with or without rapamycin. The autophagic markers, LC3 II and Beclin 1, were strongly expressed at 18-24 hr after exposure as shown by Western blotting and RT-PCR. However, the subsequent T. gondii proliferation suppressed autophagy at 36 hr post-infection. Pre-treatment with the autophagy inhibitor, 3-methyladenine (3-MA), down-regulated LC3 II and Beclin 1. The latter was also down-regulated by calpeptin, a calpain inhibitor. Monodansyl cadaverine (MDC) staining detected numerous autophagic vacuoles (AVs) at 18 hr post-infection. Ultrastructural observations showed T. gondii proliferation in parasitophorous vacuoles (PVs) coinciding with a decline in the numbers of AVs by 18 hr. FACS analysis failed to confirm the presence of cell apoptosis after exposure to T. gondii and rapamycin. We concluded that T. gondii proliferation may inhibit host cell autophagy and has an impact on cell survival.

Citations

Citations to this article as recorded by  Crossref logo
  • Modulation of autophagy as a therapeutic strategy for Toxoplasma gondii infection
    Ao Cheng, Huanan Zhang, Baike Chen, Shengyao Zheng, Hongyi Wang, Yijia Shi, Siyao You, Ming Li, Liping Jiang
    Frontiers in Cellular and Infection Microbiology.2022;[Epub]     CrossRef
  • Myrislignan Induces Redox Imbalance and Activates Autophagy in Toxoplasma gondii
    Jili Zhang, Jia Chen, Kun Lv, Bing Li, Biqing Yan, Lei Gai, Chaolu Shi, Xinnian Wang, Hongfei Si, Jiyu Zhang
    Frontiers in Cellular and Infection Microbiology.2021;[Epub]     CrossRef
  • 4-Hydroxybenzaldehyde Restricts the Intracellular Growth of Toxoplasma gondii by Inducing SIRT1-Mediated Autophagy in Macrophages
    Jina lee, Jae-Won Choi, Hye Young Han, Woo Sik Kim, Ha-Yeon Song, Eui-Baek Byun, Eui-Hong Byun, Young-Ha Lee, Jae-Min Yuk
    The Korean Journal of Parasitology.2020; 58(1): 7.     CrossRef
  • Foot-and-mouth disease virus induces PERK mediated autophagy to suppress antiviral interferon response
    H. B. Ranjitha, Veena Ammanathan, Neha Guleria, Madhusudan Hosamani, B. P. Sreenivasa, V. V. Dhanesh, Rashmi Santhoshkumar, B. K. Chandrasekhar Sagar, B. P. Mishra, R. K. Singh, Aniket Sanyal, Ravi Manjithaya, Suresh H. Basagoudanavar
    Journal of Cell Science.2020;[Epub]     CrossRef
  • The Nrf2 pathway is required for intracellular replication ofToxoplasma gondiiin activated macrophages
    Yu Pang, Zhaoxia Zhang, Yuntong Chen, Shinuo Cao, Xiuqin Yang, Honglin Jia
    Parasite Immunology.2019;[Epub]     CrossRef
  • Host-Toxoplasma gondii Coadaptation Leads to Fine Tuning of the Immune Response
    Thaís Rigueti Brasil, Celio Geraldo Freire-de-Lima, Alexandre Morrot, Andrea Cristina Vetö Arnholdt
    Frontiers in Immunology.2017;[Epub]     CrossRef
  • Anti-Toxoplasmosis Effect of the Herbal Extracts Plantago asiatica L.
    Sunhwa Hong, Okjin Kim
    Korean Journal of Plant Resources.2016; 29(1): 26.     CrossRef
  • Autophagy activated by Toxoplasma gondii infection in turn facilitates Toxoplasma gondii proliferation
    Dongmei Gao, Jing Zhang, Jun Zhao, He Wen, Jiwen Pan, Shouzhu Zhang, Yong Fang, Xiuyi Li, Yu Cai, Xuelong Wang, Shiping Wang
    Parasitology Research.2014; 113(6): 2053.     CrossRef
  • Anti-Toxoplasmosis Effect of the Halophyte Suaeda maritime
    Sunhwa Hong, Hyun-A Lee, Yun-Seong Lee, Dong-Woo Kim, Jae-Hyeok Jeong, Tae-Wan Kim, Okjin Kim
    Korean Journal of Plant Resources.2014; 27(5): 415.     CrossRef
  • 12,012 View
  • 123 Download
  • Crossref