Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Page Path

1
results for

"Pu-Reum Sun"

Article category

Keywords

Publication year

Authors

Funded articles

"Pu-Reum Sun"

Original Article
The Role of PI3K/AKT Pathway and NADPH Oxidase 4 in Host ROS Manipulation by Toxoplasma gondii
Hei Gwon Choi, Fei-Fei Gao, Wei Zhou, Pu-Reum Sun, Jae-Min Yuk, Young-Ha Lee, Guang-Ho Cha
Korean J Parasitol 2020;58(3):237-247.
Published online June 26, 2020
DOI: https://doi.org/10.3347/kjp.2020.58.3.237
Dendritic cell is one of the first innate immune cell to encounter T. gondii after the parasite crosses the host intestinal epithelium. T. gondii requires intact DC as a carrier to infiltrate into host central nervous system (CNS) without being detected or eliminated by host defense system. The mechanism by which T. gondii avoids innate immune defense of host cell, especially in the dendritic cell is unknown. Therefore, we examined the role of host PI3K/AKT signaling pathway activation by T. gondii in dendritic cell. T. gondii infection or T. gondii excretory/secretory antigen (TgESA) treatment to the murine dendritic cell line DC2.4 induced AKT phosphorylation, and treatment of PI3K inhibitors effectively suppressed the T. gondii proliferation but had no effect on infection rate or invasion rate. Furthermore, it is found that T. gondii or TgESA can reduce H2O2-induced intracellular reactive oxygen species (ROS) as well as host endogenous ROS via PI3K/AKT pathway activation. While searching for the main source of the ROS, we found that NADPH oxidase 4 (NOX4) expression was controlled by T. gondii infection or TgESA treatment, which is in correlation with previous observation of the ROS reduction by identical treatments. These findings suggest that the manipulation of the host PI3K/AKT signaling pathway and NOX4 expression is an essential mechanism for the down-regulation of ROS, and therefore, for the survival and the proliferation of T. gondii.

Citations

Citations to this article as recorded by  Crossref logo
  • Small molecule kinase inhibitor altiratinib inhibits brain cyst forming bradyzoites of Toxoplasma gondii
    Yeong Hoon Kim, Hye-Jin Ahn, Hwa Sun Kim, Ho-Woo Nam
    Journal of Microbiology.2025; 63(2): e2409001.     CrossRef
  • The role of Nrf2 signaling in parasitic diseases and its therapeutic potential
    Mohammadamin Vatankhah, Reza Panahizadeh, Ali Safari, Alireza Ziyabakhsh, Behnam Mohammadi-Ghalehbin, Narges Soozangar, Farhad Jeddi
    Heliyon.2024; 10(12): e32459.     CrossRef
  • Brain –cyst-driven genes expression in Toxoplasma Gondii Tehran strain: a parasitic-immunogenicity assessment by dint of RNA-Seq
    Marzieh Asadi, Zahra Babaei, Ali Afgar, Mohammad Hossein Banabazi, Naser ZiaAli, Ahmad Daryani, Ehsan Aghajani, Milad Mahdavi, Mohamadreza Attari, Farzaneh Zarrinkar
    Veterinary Research Communications.2024; 48(4): 2563.     CrossRef
  • BjussuLAAO-II, an l-amino acid oxidase from Bothrops jararacussu snake venom, impairs Toxoplasma gondii infection in human trophoblast cells and villous explants from the third trimester of pregnancy
    Thales Alves de Melo Fernandes, Samuel Cota Teixeira, Tássia Rafaela Costa, Alessandra Monteiro Rosini, Guilherme de Souza, Lorena Polloni, Bellisa de Freitas Barbosa, Marcelo José Barbosa Silva, Eloisa Amália Vieira Ferro, Veridiana de Melo Rodrigues Ávi
    Microbes and Infection.2023; 25(6): 105123.     CrossRef
  • Toxoplasma gondii inhibits the expression of autophagy-related genes through AKT-dependent inactivation of the transcription factor FOXO3a
    Andres Felipe Diez, Louis-Philippe Leroux, Sophie Chagneau, Alexandra Plouffe, Mackenzie Gold, Visnu Chaparro, Maritza Jaramillo, Anita A. Koshy
    mBio.2023;[Epub]     CrossRef
  • Regulation of phosphoinositide metabolism in Apicomplexan parasites
    Angela Arabiotorre, Vytas A. Bankaitis, Aby Grabon
    Frontiers in Cell and Developmental Biology.2023;[Epub]     CrossRef
  • FAF1 downregulation by Toxoplasma gondii enables host IRF3 mobilization and promotes parasite growth
    Fei‐Fei Gao, Juan‐Hua Quan, In‐Wook Choi, Yeon‐Jae Lee, Seul‐Gi Jang, Jae‐Min Yuk, Young‐Ha Lee, Guang‐Ho Cha
    Journal of Cellular and Molecular Medicine.2021; 25(19): 9460.     CrossRef
  • 7,267 View
  • 179 Download
  • 7 Web of Science
  • Crossref