Trichomonas vaginalis causes the most prevalent sexually transmitted infection worldwide. Trichomonads have been detected in prostatic tissues from prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer. Chronic prostatic inflammation is known as a risk factor for prostate enlargement, benign prostatic hyperplasia symptoms, and acute urinary retention. Our aim was to investigate whether T. vaginalis could induce inflammatory responses in cells of a benign prostatic hyperplasia epithelial cell line (BPH-1). When BPH-1 cells were infected with T. vaginalis, the protein and mRNA of inflammatory cytokines, such as CXCL8, CCL2, IL-1β, and IL-6, were increased. The activities of TLR4, ROS, MAPK, JAK2/STAT3, and NF-κB were also increased, whereas inhibitors of ROS, MAPK, PI3K, NF-κB, and anti-TLR4 antibody decreased the production of the 4 cytokines although the extent of inhibition differed. However, a JAK2 inhibitor inhibited only IL-6 production. Culture supernatants of the BPH-1 cells that had been incubated with live T. vaginalis (trichomonad-conditioned medium, TCM) contained the 4 cytokines and induced the migration of human monocytes (THP-1 cells) and mast cells (HMC-1 cells). TCM conditioned by BPH-1 cells pretreated with NF-κB inhibitor showed decreased levels of cytokines and induced less migration. Therefore, it is suggested that these cytokines are involved in migration of inflammatory cells. These results suggest that T. vaginalis infection of BPH patients may cause inflammation, which may induce lower urinary tract symptoms (LUTS).
Citations
Citations to this article as recorded by
Immunomodulatory roles of autophagic flux and IFIT in human ectocervical cells upon Trichomonas vaginalis infection Ching-Chun Liu, Lichieh Julie Chu, Yuan-Ming Yeh, Hsin-Chung Lin, Lih-Chyang Chen, Ching-Yun Huang, Shu-Fang Chiu, Fang-Wen Cheng, Wei-Ning Lin, Kuo-Yang Huang International Immunopharmacology.2025; 155: 114643. CrossRef
Recent Advances in Biology, Host and Microbe Interactions of the Human Sexually Transmitted Parasite Trichomonas vaginalis Desmond L. Seybold, Gregory P. Contreras, Jia-Feng Chang, Ting-Yu Yeh International Journal of Molecular Sciences.2025; 26(24): 12015. CrossRef
Intrinsic and extrinsic factors causing hyperplasia of the prostate Yuki Kyoda, Kosuke Shibamori, Tetsuya Shindo, Takeshi Maehana, Kohei Hashimoto, Ko Kobayashi, Toshiaki Tanaka, Fumimasa Fukuta, Naoya Masumori International Journal of Urology.2024; 31(7): 705. CrossRef
P. gingivalis in oral-prostate axis exacerbates benign prostatic hyperplasia via IL-6/IL-6R pathway Shuang-Ying Wang, Yi Cai, Xiao Hu, Fei Li, Xin-Hang Qian, Ling-Yun Xia, Bo Gao, Lan Wu, Wen-Zhong Xie, Jia-Min Gu, Tong Deng, Cong Zhu, Hai-Chang Jia, Wan-Qi Peng, Jiao Huang, Cheng Fang, Xian-Tao Zeng Military Medical Research.2024;[Epub] CrossRef
The correlation between Trichomonas vaginalis infection and reproductive system cancer: a systematic review and meta-analysis Zhenchao Zhang, Dongxian Li, Yuhua Li, Rui Zhang, Xianghuan Xie, Yi Yao, Linfei Zhao, Xiaowei Tian, Zhenke Yang, Shuai Wang, Xuejing Yue, Xuefang Mei Infectious Agents and Cancer.2023;[Epub] CrossRef
Inflammatory response to Trichomonas vaginalis in the pathogenesis of prostatitis and benign prostatic hyperplasia Ik-Hwan Han, Jung-Hyun Kim, Jae-Sook Ryu Parasites, Hosts and Diseases.2023; 61(1): 2. CrossRef
Trichomoniasis Olivia T. Van Gerwen, Skye A. Opsteen, Keonte J. Graves, Christina A. Muzny Infectious Disease Clinics of North America.2023; 37(2): 245. CrossRef
Inflammatory responses during trichomoniasis: The role of Toll‐like receptors and inflammasomes Abdollah Jafarzadeh, Maryam Nemati, Ehsan Salarkia, Sonal Yadav, Najmeh Aminizadeh, Sara Jafarzadeh, Manisha Yadav Parasite Immunology.2023;[Epub] CrossRef
IL-6 Signaling Link between Inflammatory Tumor Microenvironment and Prostatic Tumorigenesis Cosmin-Victor Ene, Ilinca Nicolae, Bogdan Geavlete, Petrisor Geavlete, Corina Daniela Ene, Yun Ping Lim Analytical Cellular Pathology.2022; 2022: 1. CrossRef
Ellagic acid improves benign prostate hyperplasia by regulating androgen signaling and STAT3 Woo Yong Park, Gahee Song, Ja Yeon Park, Kwang Seok Ahn, Hyun Jeong Kwak, Jinbong Park, Jun Hee Lee, Jae-Young Um Cell Death & Disease.2022;[Epub] CrossRef
Association between trichomoniasis and prostate and bladder diseases: a population-based case–control study Hung-Yi Yang, Ruei-Yu Su, Chi-Hsiang Chung, Kuo-Yang Huang, Hsin-An Lin, Jui-Yang Wang, Chien-Chou Chen, Wu-Chien Chien, Hsin-Chung Lin Scientific Reports.2022;[Epub] CrossRef
Increased diagnostic yield of routine multiplex PCR compared to clinician requested testing for detection of Trichomonas vaginalis Brooke Webb, Andrea Crampton, Michelle J. Francis, John Hamblin, Tony M. Korman, Maryza Graham Pathology.2021; 53(2): 257. CrossRef
Development of a convenient detection method for Trichomonas vaginalis based on loop-mediated isothermal amplification targeting adhesion protein 65 Yuhua Li, Shuai Wang, Haoran Li, Xiaoxiao Song, Hao Zhang, Yujuan Duan, Chengyang Luo, Bingli Wang, Sifan Ji, Qing Xie, Zhenchao Zhang BMC Infectious Diseases.2020;[Epub] CrossRef
Inflammatory mediators of prostate epithelial cells stimulated with Trichomonas vaginalis promote proliferative and invasive properties of prostate cancer cells Ik‐Hwan Han, Jung‐Hyun Kim, Ki‐Seok Jang, Jae‐Sook Ryu The Prostate.2019; 79(10): 1133. CrossRef
Monocyte-derived extracellular trap (MET) formation induces aggregation and affects motility of human spermatozoa in vitro Mabel Schulz, Fabiola Zambrano, Hans-Christian Schuppe, Florian Wagenlehner, Anja Taubert, Ulrich Gaertner, Rául Sánchez, Carlos Hermosilla Systems Biology in Reproductive Medicine.2019; 65(5): 357. CrossRef
Synopsis: Special Issue on “Disruption of signaling homeostasis induced crosstalk in the carcinogenesis paradigmEpistemology of the origin of cancer” Björn L.D.M. Brücher, Ijaz S. Jamall, Obul R. Bandapalli 4open.2019; 2: 28. CrossRef
Cancer-Associated Fibroblasts Produce Netrin-1 to Control Cancer Cell Plasticity Pei-Ju Sung, Nicolas Rama, Jeromine Imbach, Stephany Fiore, Benjamin Ducarouge, David Neves, Huei-Wen Chen, David Bernard, Pan-Chyr Yang, Agnès Bernet, Stephane Depil, Patrick Mehlen Cancer Research.2019; 79(14): 3651. CrossRef
Atractylenolide II Induces Apoptosis of Prostate Cancer Cells through Regulation of AR and JAK2/STAT3 Signaling Pathways Jing Wang, Moussa Ide Nasser, Salah Adlat, Ming Ming Jiang, Nan Jiang, Li Gao Molecules.2018; 23(12): 3298. CrossRef
Proliferation of prostate epithelia induced by IL‐6 from stroma reacted with Trichomonas vaginalis J.‐H. Kim, I.‐H. Han, Y.‐S. Kim, C.‐S. Noh, J.‐S. Ryu Parasite Immunology.2018;[Epub] CrossRef
Proliferation of Prostate Stromal Cell Induced by Benign Prostatic Hyperplasia Epithelial Cell Stimulated WithTrichomonas vaginalisvia Crosstalk With Mast Cell Jung-Hyun Kim, Sang-Su Kim, Ik-Hwan Han, Seobo Sim, Myoung-Hee Ahn, Jae-Sook Ryu The Prostate.2016; 76(15): 1431. CrossRef
Signalling pathways associated with IL‐6 production and epithelial–mesenchymal transition induction in prostate epithelial cells stimulated with Trichomonas vaginalis I. H. Han, J. H. Kim, S. S. Kim, M. H. Ahn, J. S. Ryu Parasite Immunology.2016; 38(11): 678. CrossRef