Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Page Path

4
results for

"glycoprotein"

Article category

Keywords

Publication year

Authors

Funded articles

"glycoprotein"

Brief Communication

Molecular Prevalence and Genotypes of Cryptosporidium parvum and Giardia duodenalis in Patients with Acute Diarrhea in Korea, 2013-2016
Da-Won Ma, Myoung-Ro Lee, Sung-Hee Hong, Shin-Hyeong Cho, Sang-Eun Lee
Korean J Parasitol 2019;57(5):531-536.
Published online October 31, 2019
DOI: https://doi.org/10.3347/kjp.2019.57.5.531
Cryptosporidium parvum and Giardia duodenalis are the main diarrhea-causing parasitic pathogens; however, their prevalence in Korea is unknown. Here, we conducted a survey to determine the prevalence and genotype distribution of these 2 pathogens causing acute diarrhea in 8,571 patients hospitalized in 17 Regional Institute of Health Environment sites in Korea, during 2013-2016. C. parvum and G. duodenalis were detected and genotyped by nested PCR, and the isolate were molecularly characterized by sequencing the glycoprotein 60 (Gp60) and β-giardin genes, respectively. The overall prevalence of C. parvum and G. duodenalis was 0.37% (n=32) and 0.55% (n=47), respectively, and both pathogens were more prevalent in children under 9 years old. Molecular epidemiological analysis showed that the C. parvum isolates belonged to the IIa family and were subtyped as IIaA13G2R1, IIaA14G2R1, IIaA15G2R1, and IIaA18G3R1. Analysis of the β-giardin gene fragment from G. duodenalis showed that all positive strains belong to assemblage A. This is the first report on the molecular epidemiology and subtyping of C. parvum and G. duodenalis in such a large number of diarrheal patients in Korea. These results highlight the need for continuous monitoring of these zoonotic pathogens and provide a basis for implementing control and prevention strategies. Further, the results might be useful for epidemiological investigation of the source of outbreak.

Citations

Citations to this article as recorded by  Crossref logo
  • An Epidemiology Study on Distribution of Giardia lamblia in Incheon City
    Su Jin Park, Ju Hee Kim, Hyeon-Jeong Go, Nam Yee Kim, Sung Suck Oh, Young Woo Gong, MunJu Kwon, Jeong-An Gim, Soo-Son Lim
    Biomedical Science Letters.2025; 31(2): 218.     CrossRef
  • Cryptosporidium and cryptosporidiosis: An update of Asian perspectives in humans, water and food, 2015–2025
    Shahira Abdelaziz Ali Ahmed, Sonia Boughattas, Mohammad Reza Mahmoudi, Huma Khan, Simuzar Mamedova, Ardra Namboodiri, Frederick R. Masangkay, Panagiotis Karanis
    Current Research in Parasitology & Vector-Borne Diseases.2025; 8: 100311.     CrossRef
  • Detection and molecular characterization of Cryptosporidium spp. in dairy calves in Lisbon and Tagus Valley, Portugal
    Mariana Louro, Ricardo Bexiga, Isabel Pereira da Fonseca, Jacinto Gomes
    Veterinary Parasitology: Regional Studies and Reports.2024; 47: 100964.     CrossRef
  • Epidemiological investigation of Cryptosporidium in children with diarrhea in middle Inner Mongolia, China
    Wenhui Guo, Xinyu Xue, Ruifeng Li, Ru Liang, Zixuan Wang, Jiashan Qin, Chao Duan, Tieyun Chen, Xinlei Yan
    Acta Tropica.2024; 254: 107177.     CrossRef
  • Follow-up investigation into Cryptosporidium prevalence and transmission in Western European dairy farms
    Sumaiya Hoque, Pedro Pinto, Cláudia A. Ribeiro, Evi Canniere, Yvonne Daandels, Martine Dellevoet, Anne Bourgeois, Ourida Hammouma, Paul Hunter, Eleni Gentekaki, Martin Kváč, Jérôme Follet, Anastasios D. Tsaousis
    Veterinary Parasitology.2023; 318: 109920.     CrossRef
  • Outbreak of severe diarrhea due to zoonotic Cryptosporidium parvum and C. xiaoi in goat kids in Chungcheongbuk-do, Korea
    Ah-Young Kim, Badriah Alkathiri, Subin Lee, Kyung-Duk Min, Soochong Kim, Sang-Myeong Lee, Wan-Kyu Lee, Dongmi Kwak, Seung-Hun Lee
    Parasitology Research.2023; 122(9): 2045.     CrossRef
  • Emergence of zoonotic Cryptosporidium parvum in China
    Yaqiong Guo, Una Ryan, Yaoyu Feng, Lihua Xiao
    Trends in Parasitology.2022; 38(4): 335.     CrossRef
  • Distribution of Cryptosporidium parvum subgenotypes in pre-weaned calves in Germany
    Franziska Göhring, Matthias Lendner, Arwid Daugschies
    Veterinary Parasitology: Regional Studies and Reports.2022; 36: 100806.     CrossRef
  • Annual Report on the External Quality Assessment Scheme for Clinical Parasitology in Korea (2020–2021)
    Jihu Jeon, Eun Jeong Won, Kyung Hwan Byeon, Yu Jeong Lee, Moon-Ju Kim, Myung Geun Shin, Jong Hee Shin
    Journal of Laboratory Medicine and Quality Assurance.2022; 44(4): 185.     CrossRef
  • Clinical cases of zoonotic Cryptosporidium parvum (subtype IIdA15G1) infections in Korean goats
    J Kim, K Lee, SG Roh, HY Kim, JW Kim, BJ So, EJ Choi
    Veterinární medicína.2022; 67(3): 156.     CrossRef
  • Causes of acute gastroenteritis in Korean children between 2004 and 2019
    Eell Ryoo
    Clinical and Experimental Pediatrics.2021; 64(6): 260.     CrossRef
  • Clinical and Laboratory Diagnosis of Cryptosporidiosis among Children with Acute Gastroenteritis at a Tertiary Hospital, Cairo, Egypt
    Mohammad Ashraf Abdel Wahed, Yasmine Elsayed Abdelrahman Shehab, Hanan Mahmoud Abou-Seri, Yosra Mohamed Mohsen Awad
    Journal of Tropical Pediatrics.2021;[Epub]     CrossRef
  • Giardia duodenalis Virulence — “To Be, or Not To Be”
    Raúl Argüello-García, M. Guadalupe Ortega-Pierres
    Current Tropical Medicine Reports.2021; 8(4): 246.     CrossRef
  • Cross-Border Investigations on the Prevalence and Transmission Dynamics of Cryptosporidium Species in Dairy Cattle Farms in Western Mainland Europe
    Pedro Pinto, Cláudia A. Ribeiro, Sumaiya Hoque, Ourida Hammouma, Hélène Leruste, Sébastien Détriché, Evi Canniere, Yvonne Daandels, Martine Dellevoet, Janine Roemen, Anne Barbier Bourgeois, Martin Kváč, Jérôme Follet, Anastasios D. Tsaousis
    Microorganisms.2021; 9(11): 2394.     CrossRef
  • Asymptomatic Cryptosporidium infections in ewes and lambs are a source of environmental contamination with zoonotic genotypes of Cryptosporidium parvum
    Léa Bordes, Pauline Houert, Damien Costa, Loïc Favennec, Corinne Vial-Novella, Francis Fidelle, Christelle Grisez, Françoise Prévot, Philippe Jacquiet, Romy Razakandrainibe
    Parasite.2020; 27: 57.     CrossRef
  • Report of the Korean Association of External Quality Assessment Service on Clinical Parasitology (2018–2019)
    Suhak Jeon, Eun Jeong Won, Yu Jeong Lee, Moon-Ju Kim, Myung Geun Shin, Jong Hee Shin
    Journal of Laboratory Medicine and Quality Assurance.2020; 42(4): 177.     CrossRef
  • 8,243 View
  • 129 Download
  • 14 Web of Science
  • Crossref

Mini Review

Trypanosome Glycosylphosphatidylinositol Biosynthesis
Yeonchul Hong, Taroh Kinoshita
Korean J Parasitol 2009;47(3):197-204.
Published online August 28, 2009
DOI: https://doi.org/10.3347/kjp.2009.47.3.197

Trypanosoma brucei, a protozoan parasite, causes sleeping sickness in humans and Nagana disease in domestic animals in central Africa. The trypanosome surface is extensively covered by glycosylphosphatidylinositol (GPI)-anchored proteins known as variant surface glycoproteins and procyclins. GPI anchoring is suggested to be important for trypanosome survival and establishment of infection. Trypanosomes are not only pathogenically important, but also constitute a useful model for elucidating the GPI biosynthesis pathway. This review focuses on the trypanosome GPI biosynthesis pathway. Studies on GPI that will be described indicate the potential for the design of drugs that specifically inhibit trypanosome GPI biosynthesis.

Citations

Citations to this article as recorded by  Crossref logo
  • Metatranscriptomes-based sequence similarity networks uncover genetic signatures within parasitic freshwater microbial eukaryotes
    Arthur Monjot, Jérémy Rousseau, Lucie Bittner, Cécile Lepère
    Microbiome.2025;[Epub]     CrossRef
  • Identification of a protective antigen reveals the trade-off between iron acquisition and antigen exposure in a global fungal pathogen
    Yeqi Li, Tuyetnhu Pham, Kenton Hipsher, Christopher W. J. Lee, Jie Jiao, Josef M. Penninger, James W. Kronstad, Yumeng Fan, Youbao Zhao, Suresh Ambati, Richard B. Meagher, Xiaofeng Xie, Xiaorong Lin
    Proceedings of the National Academy of Sciences.2025;[Epub]     CrossRef
  • Molecular basis of the inositol deacylase PGAP1 involved in quality control of GPI-AP biogenesis
    Jingjing Hong, Tingting Li, Yulin Chao, Yidan Xu, Zhini Zhu, Zixuan Zhou, Weijie Gu, Qianhui Qu, Dianfan Li
    Nature Communications.2024;[Epub]     CrossRef
  • Identification of TbPBN1 in Trypanosoma brucei reveals a conserved heterodimeric architecture for glycosylphosphatidylinositol‐mannosyltransferase‐I
    Andrew Cowton, Peter Bütikofer, Robert Häner, Anant K. Menon
    Molecular Microbiology.2022; 117(2): 450.     CrossRef
  • Persistence of Trypanosoma brucei as early procyclic forms and social motility are dependent on glycosylphosphatidylinositol transamidase
    Sebastian Knüsel, Aurelio Jenni, Mattias Benninger, Peter Bütikofer, Isabel Roditi
    Molecular Microbiology.2022; 117(4): 802.     CrossRef
  • Fatty acid uptake in Trypanosoma brucei: Host resources and possible mechanisms
    Nava Raj Poudyal, Kimberly S. Paul
    Frontiers in Cellular and Infection Microbiology.2022;[Epub]     CrossRef
  • The Glycosylphosphatidylinositol Anchor: A Linchpin for Cell Surface Versatility of Trypanosomatids
    Alyssa R. Borges, Fabian Link, Markus Engstler, Nicola G. Jones
    Frontiers in Cell and Developmental Biology.2021;[Epub]     CrossRef
  • Discovery and Genetic Validation of Chemotherapeutic Targets for Chagas' Disease
    Juan Felipe Osorio-Méndez, Ana María Cevallos
    Frontiers in Cellular and Infection Microbiology.2019;[Epub]     CrossRef
  • Computational and experimental analysis of the glycophosphatidylinositol-anchored proteome of the human parasitic nematode Brugia malayi
    Fana B. Mersha, Leslie K. Cortes, Ashley N. Luck, Colleen M. McClung, Cristian I. Ruse, Christopher H. Taron, Jeremy M. Foster, Catherine FAIVRE-SARRAILH
    PLOS ONE.2019; 14(9): e0216849.     CrossRef
  • Comparative genomics of Leishmania (Mundinia)
    Anzhelika Butenko, Alexei Y. Kostygov, Jovana Sádlová, Yuliya Kleschenko, Tomáš Bečvář, Lucie Podešvová, Diego H. Macedo, David Žihala, Julius Lukeš, Paul A. Bates, Petr Volf, Fred R. Opperdoes, Vyacheslav Yurchenko
    BMC Genomics.2019;[Epub]     CrossRef
  • Protozoan Parasites Glycosylphosphatidylinositol Anchors: Structures, Functions and Trends for Drug Discovery
    Ana Luísa Malaco Morotti, Maristela Braga Martins-Teixeira, Ivone Carvalho
    Current Medicinal Chemistry.2019; 26(23): 4301.     CrossRef
  • Targeting the GPI biosynthetic pathway
    Usha Yadav, Mohd Ashraf Khan
    Pathogens and Global Health.2018; 112(3): 115.     CrossRef
  • Characterising N-acetylglucosaminylphosphatidylinositol de-N-acetylase (CaGpi12), the enzyme that catalyses the second step of GPI biosynthesis in Candida albicans
    Usha Yadav, Tarun Kumar Rai, Subhash Chandra Sethi, Anupriya Chandraker, Mohd Ashraf Khan, Sneha Sudha Komath
    FEMS Yeast Research.2018;[Epub]     CrossRef
  • RFT1 Protein Affects Glycosylphosphatidylinositol (GPI) Anchor Glycosylation
    Petra Gottier, Amaia Gonzalez-Salgado, Anant K. Menon, Yuk-Chien Liu, Alvaro Acosta-Serrano, Peter Bütikofer
    Journal of Biological Chemistry.2017; 292(3): 1103.     CrossRef
  • The Glycerol‐3‐Phosphate Acyltransferase TbGAT is Dispensable for Viability and the Synthesis of Glycerolipids in Trypanosoma brucei
    Nipul Patel, Karim A. Pirani, Tongtong Zhu, Melanie Cheung‐See‐Kit, Sungsu Lee, Daniel G. Chen, Rachel Zufferey
    Journal of Eukaryotic Microbiology.2016; 63(5): 598.     CrossRef
  • Knockdown of APC/C-associated genes and its effect on viability and cell cycle of protozoan parasite of Trypanosoma brucei
    Mohamed Bessat
    Parasitology Research.2014; 113(4): 1555.     CrossRef
  • Molecular modeling and molecular dynamics simulations of GPI 14 in Leishmania major: Insight into the catalytic site for active site directed drug design
    Sonali Shinde, Milsee Mol, Virashree Jamdar, Shailza Singh
    Journal of Theoretical Biology.2014; 351: 37.     CrossRef
  • Metabolomic analysis of trypanosomatid protozoa
    Darren J. Creek, Jana Anderson, Malcolm J. McConville, Michael P. Barrett
    Molecular and Biochemical Parasitology.2012; 181(2): 73.     CrossRef
  • New Insights in Staging and Chemotherapy of African Trypanosomiasis and Possible Contribution of Medicinal Plants
    Paul F. Seke Etet, M. Fawzi Mahomoodally
    The Scientific World Journal.2012; 2012: 1.     CrossRef
  • Trypanosoma brucei: a model micro‐organism to study eukaryotic phospholipid biosynthesis
    Mauro Serricchio, Peter Bütikofer
    The FEBS Journal.2011; 278(7): 1035.     CrossRef
  • Synthetic Glycosylphosphatidylinositol as Tools for Glycoparasitology Research
    Nahid Azzouz, Faustin Kamena, Peter H. Seeberger
    OMICS: A Journal of Integrative Biology.2010; 14(4): 445.     CrossRef
  • Immunobiology of African Trypanosomes: Need of Alternative Interventions
    Toya Nath Baral
    Journal of Biomedicine and Biotechnology.2010; 2010: 1.     CrossRef
  • Lipid metabolism in Trypanosoma brucei
    Terry K. Smith, Peter Bütikofer
    Molecular and Biochemical Parasitology.2010; 172(2): 66.     CrossRef
  • 10,603 View
  • 106 Download
  • Crossref
Brief Communications

We purified specific 31/36 kDa antigenic molecules from sparganum in different intermediate hosts (snakes and mice) and analyzed their monosaccharide compositions. Compositional analysis showed that glucose and mannose concentrations were 2-3 fold higher in the 31/36 kDa molecule purified from snakes than those from mice. This result implies that antigenic glycoproteins of sparganum from snakes might be modified in mammalian sparganosis with respect to their carbohydrate composition.

Citations

Citations to this article as recorded by  Crossref logo
  • Serodiagnosis of experimental sparganum infections of mice and human sparganosis by ELISA using ES antigens of Spirometra mansoni spargana
    Jing Cui, Nan Li, Zhong Quan Wang, Peng Jiang, Xi Meng Lin
    Parasitology Research.2011; 108(6): 1551.     CrossRef
  • 7,383 View
  • 47 Download
  • Crossref

The carbohydrate moieties of larval sparganum proteins in two different species, the snakes, Elaphe rufodorsata, the Balb/c mouse and those of the adult worm, Spirometra erinacei, were compared using five different lectins including GNA, SNA, MAA, PNA and DSA. The GNA positive 53 kDa molecule, which is excretory-secretory protease in the sparganum from the snake showed a stage specific and developmental regulation. We also suggested that sparganum glycosylation may be involved in immune evasion and differentiation into an adult worm.

Citations

Citations to this article as recorded by  Crossref logo
  • Functional changes in regulatory T cells during an experimental infection with sparganum (plerocercofid of Spirometra mansoni)
    Hyung‐Ran Kim, Su‐Min Lee, Jong‐Wha Won, Woosung Lim, Byung‐In Moon, Hyun‐Jong Yang, Ju‐Young Seoh
    Immunology.2013; 138(1): 57.     CrossRef
  • Using community surveillance data to differentiate between emerging and endemic amphibian diseases
    S Young, LF Skerratt, D Mendez, R Speare, L Berger, M Steele
    Diseases of Aquatic Organisms.2012; 98(1): 1.     CrossRef
  • 6,565 View
  • 110 Download
  • Crossref