Leptin is a type of adipokine mainly produced by adipocytes and reported to be overproduced in prostate cancer. However, it is not known whether it stimulates the proliferation of prostate cells. In this study, we investigated whether benign prostatic hyperplasia epithelial cells (BPH-1 cells) infected with Trichomonas vaginalis induced the proliferation of prostate cells via a leptin signaling pathway. To investigate the effect of crosstalk between adipocyte leptin and inflamed epithelial cell in proliferation of prostate cells, adipocytes 3T3-L1 cells were incubated in conditioned medium of BPH-1 cells infected with T. vaginalis (T. vaginalis-conditioned medium, TCM), and then the adipocyte-conditioned medium (ATCM) was identified to cause proliferation of prostate cells. BPH-1 cells incubated with live T. vaginalis released pro-inflammatory cytokines, and conditioned medium of these cells caused migration of adipocytes. When prostate stromal cells and BPH-1 cells were incubated with adipocyte conditioned medium containing leptin, their growth rates increased as did expression of the leptin receptor (known as OBR) and signaling molecules such as JAK2/STAT3, Notch and survivin. Moreover, blocking the OBR reduced this proliferation and the expression of leptin signaling molecules in response to ATCM. In conclusion, our findings show that inflamed BPH-1 cells infected with T. vaginalis induce the proliferation of prostate cells through leptin-OBR signaling. Therefore, it is likely that T. vaginalis contributes to prostate enlargement in BPH via adipocyte leptin released as a result of inflammation of the prostate.
Citations
Citations to this article as recorded by
Interplay of obesity and parasitic infection: current evidence of immunogenesis, tumorigenesis and leptin receptor involvement Enas El Saftawy, Mansour Alghamdi, Basma Emad Aboulhoda Nutrition & Metabolism.2025;[Epub] CrossRef
Intrinsic and extrinsic factors causing hyperplasia of the prostate Yuki Kyoda, Kosuke Shibamori, Tetsuya Shindo, Takeshi Maehana, Kohei Hashimoto, Ko Kobayashi, Toshiaki Tanaka, Fumimasa Fukuta, Naoya Masumori International Journal of Urology.2024; 31(7): 705. CrossRef
Association between metabolic syndrome and benign prostatic hyperplasia: The underlying molecular connection Xun Fu, Yutao Wang, Yi Lu, Jiang Liu, Hongjun Li Life Sciences.2024; 358: 123192. CrossRef
Point-of-Care Diagnostic for Trichomonas vaginalis, the Most Prevalent, Non-Viral Sexually Transmitted Infection John F. Alderete, Hermes Chan Pathogens.2023; 12(1): 77. CrossRef
The correlation between Trichomonas vaginalis infection and reproductive system cancer: a systematic review and meta-analysis Zhenchao Zhang, Dongxian Li, Yuhua Li, Rui Zhang, Xianghuan Xie, Yi Yao, Linfei Zhao, Xiaowei Tian, Zhenke Yang, Shuai Wang, Xuejing Yue, Xuefang Mei Infectious Agents and Cancer.2023;[Epub] CrossRef
Inflammatory response to Trichomonas vaginalis in the pathogenesis of prostatitis and benign prostatic hyperplasia Ik-Hwan Han, Jung-Hyun Kim, Jae-Sook Ryu Parasites, Hosts and Diseases.2023; 61(1): 2. CrossRef
Proliferation of Mouse Prostate Cancer Cells Inflamed by Trichomonas vaginalis Sang-Su Kim, Kyu-Shik Kim, Ik-Hwan Han, Yeseul Kim, Seong Sik Bang, Jung-Hyun Kim, Yong-Suk Kim, Soo-Yeon Choi, Jae-Sook Ryu The Korean Journal of Parasitology.2021; 59(6): 547. CrossRef
Involvement of Macrophages in Proliferation of Prostate Cancer Cells Infected with Trichomonas vaginalis Kyu-Shik Kim, Hong-Sang Moon, Sang-Su Kim, Jae-Sook Ryu The Korean Journal of Parasitology.2021; 59(6): 557. CrossRef