Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Page Path

2
results for

"vaccine candidate"

Article category

Keywords

Publication year

Authors

Funded articles

"vaccine candidate"

Original Articles
The protective effects of BMSA1 and BMSA5-1-1 proteins against Babesia microti infection
Yu Chun Cai, Chun Li Yang, Peng Song, Muxin Chen, Jia Xu Chen
Parasites Hosts Dis 2024;62(1):53-63.
Published online February 23, 2024
DOI: https://doi.org/10.3347/PHD.23077
The intracellular parasite Babesia microti is among the most significant species causing human babesiosis and is an emerging threat to human health worldwide. Unravelling the pathogenic molecular mechanisms of babesiosis is crucial in developing new diagnostic and preventive methods. This study assessed how priming with B. microti surface antigen 1 (BHSA 1) and seroreactive antigen 5-1-1 (BHSA 5-1-1) mediate protection against B. microti infection. The results showed that 500 µg/ml rBMSA1 and rBMSA5-1-1 partially inhibited the invasion of B. microti in vitro by 42.0 ± 3.0%, and 48.0 ± 2.1%, respectively. Blood smears revealed that peak infection at 7 days post-infection (dpi) was 19.6%, 24.7%, and 46.7% in the rBMSA1, rBmSA5-1-1, compared to the control groups (healthy mice infected with B. microti only), respectively. Routine blood tests showed higher white blood cell, red blood cell counts, and haemoglobin levels in the 2 groups (BMSA1 and BMSA5 5-1-1) than in the infection control group at 0–28 dpi. Moreover, the 2 groups had higher serum interferon-γ, tumor necrosis factor-α and Interleukin-17A levels, and lower IL-10 levels than the infection control group throughout the study. These 2 potential vaccine candidate proteins partially inhibit in vitro and in vivo B. microti infection and enhance host immunological response against B. microti infection.
  • 3,511 View
  • 79 Download
Isolation and Characterization of Vaccine Candidate Genes Including CSP and MSP1 in Plasmodium yoelii
Seon-Hee Kim, Young-An Bae, Ju-Young Seoh, Hyun-Jong Yang
Korean J Parasitol 2017;55(3):255-265.
Published online June 30, 2017
DOI: https://doi.org/10.3347/kjp.2017.55.3.255
Malaria is an infectious disease affecting humans, which is transmitted by the bite of Anopheles mosquitoes harboring sporozoites of parasitic protozoans belonging to the genus Plasmodium. Despite past achievements to control the protozoan disease, malaria still remains a significant health threat up to now. In this study, we cloned and characterized the full-unit Plasmodium yoelii genes encoding merozoite surface protein 1 (MSP1), circumsporozoite protein (CSP), and Duffy-binding protein (DBP), each of which can be applied for investigations to obtain potent protective vaccines in the rodent malaria model, due to their specific expression patterns during the parasite life cycle. Recombinant fragments corresponding to the middle and C-terminal regions of PyMSP1 and PyCSP, respectively, displayed strong reactivity against P. yoelii-infected mice sera. Specific native antigens invoking strong humoral immune response during the primary and secondary infections of P. yoelii were also abundantly detected in experimental ICR mice. The low or negligible parasitemia observed in the secondary infected mice was likely to result from the neutralizing action of the protective antibodies. Identification of these antigenic proteins might provide the necessary information and means to characterize additional vaccine candidate antigens, selected solely on their ability to produce the protective antibodies.
  • 9,599 View
  • 159 Download