Warning: fopen(/home/virtual/parasitol/journal/upload/ip_log/ip_log_2025-12.txt): failed to open stream: Permission denied in /home/virtual/lib/view_data.php on line 83

Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84
Overexpression of Ubiquitin and Amino Acid Permease Genes in Association with Antimony Resistance in Leishmania tropica Field Isolates
Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Articles

Original Article

Overexpression of Ubiquitin and Amino Acid Permease Genes in Association with Antimony Resistance in Leishmania tropica Field Isolates

The Korean Journal of Parasitology 2013;51(4):413-419.
Published online: August 30, 2013

1Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.

2Center for Research of Endemic Parasites of Iran (CREPI), Tehran University of Medical Sciences, Tehran, Iran.

3Department of Medical Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.

4Center for Research & Training in Skin Diseases & Leprosy, Tehran University of Medical Sciences, Tehran, Iran.

5Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.

6Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.

7Stem Cell Preparation Unit, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.

• Received: February 5, 2013   • Revised: April 11, 2013   • Accepted: May 3, 2013

© 2013, Korean Society for Parasitology and Tropical Medicine

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 8,996 Views
  • 90 Download
  • 18 Crossref
  • 27 Scopus
prev next

Citations

Citations to this article as recorded by  Crossref logo
  • Comparative transcriptomics of naturally susceptible and resistant Trypanosoma cruzi strains in response to Benznidazole
    Carlos Ospina, Tatiana Cáceres, Stivenn Gutiérrez, Luz Helena Patiño, Luis David Sáenz-Pérez, Karen Moreno Medina, Juan Carlos Villar, Juan David Ramírez
    International Journal for Parasitology: Drugs and Drug Resistance.2025; 29: 100623.     CrossRef
  • Leishmania spp. genetic factors associated with cutaneous leishmaniasis antimony pentavalent drug resistance: a systematic review
    Raphaela Lisboa Andrade Nery, Thaline Mabel Sousa Santos, Luana Leandro Gois, Aldina Barral, Ricardo Khouri, Caroline Alves Feitosa, Luciane Amorim Santos
    Memórias do Instituto Oswaldo Cruz.2024;[Epub]     CrossRef
  • Transcriptomic analysis of benznidazole-resistant and susceptible Trypanosoma cruzi populations
    Davi Alvarenga Lima, Leilane Oliveira Gonçalves, João Luís Reis-Cunha, Paul Anderson Souza Guimarães, Jeronimo Conceição Ruiz, Daniel Barbosa Liarte, Silvane Maria Fonseca Murta
    Parasites & Vectors.2023;[Epub]     CrossRef
  • Quantitative proteomic analysis reveals differential modulation of crucial stage specific proteins during promastigote to amastigote differentiation in Leishmania donovani
    Chinmayee Bar Routaray, Vaibhavee Choudhari, Divya Prakash, Rajendra Patil, Surabhi Jagtap, Shakuntala Bai, Mahesh J. Kulkarni, Suresh V. Kuchipudi, Kalpana Pai
    Journal of Proteins and Proteomics.2022; 13(1): 17.     CrossRef
  • Leishmania infantum UBC1 in Metacyclic Promastigotes from Phlebotomus perniciosus, a Vaccine Candidate for Zoonotic Visceral Leishmaniasis
    Jaime Larraga, Pedro Alcolea, Ana Alonso, Luis Martins, Inmaculada Moreno, Mercedes Domínguez, Vicente Larraga
    Vaccines.2022; 10(2): 231.     CrossRef
  • Global distribution of treatment resistance gene markers for leishmaniasis
    Samira Salari, Mehdi Bamorovat, Iraj Sharifi, Pooya Ghasemi Nejad Almani
    Journal of Clinical Laboratory Analysis.2022;[Epub]     CrossRef
  • Elucidation of the Flavor Aspects and Flavor-Associated Genomic Regions in Bottle Gourd (Lagenaria siceraria) by Metabolomic Analysis and QTL-seq
    Ying Wang, Yanwei Li, Xiaohua Wu, Xinyi Wu, Zishan Feng, Jian Wang, Baogen Wang, Zhongfu Lu, Guojing Li
    Foods.2022; 11(16): 2450.     CrossRef
  • Effect of the variation in the extracellular concentration of l-arginine in the physiology of Leishmania (Viannia) braziliensis and its susceptibility to some antileishmanial drugs
    Manuela Giraldo, Yulieth A. Upegui, Jorge L. Higuita-Castro, Luis A. Gonzalez, Sneider Gutierrez, Sergio A. Pulido, Sara M. Robledo
    Experimental Parasitology.2022; 242: 108395.     CrossRef
  • HAS 1: A natural product from soil-isolated Streptomyces species with potent activity against cutaneous leishmaniasis caused by Leishmania tropica
    Bassel Awada, Maguy Hamie, Rana El Hajj, Ghada Derbaj, Rania Najm, Perla Makhoul, Dima Hajj Ali, Antoine G. Abou Fayad, Hiba El Hajj
    Frontiers in Pharmacology.2022;[Epub]     CrossRef
  • Metabolite Biomarkers of Leishmania Antimony Resistance
    Sneider Alexander Gutierrez Guarnizo, Zemfira N. Karamysheva, Elkin Galeano, Carlos E. Muskus
    Cells.2021; 10(5): 1063.     CrossRef
  • Voriconazole resistance genes in Aspergillus flavus clinical isolates
    F. Zaini, E. Lotfali, A. Fattahi, E. Siddig, S. Farahyar, E. Kouhsari, M. Saffari
    Journal de Mycologie Médicale.2020; 30(2): 100953.     CrossRef
  • Comparative transcriptomic analysis of antimony resistant and susceptible Leishmania infantum lines
    Juvana Moreira Andrade, Leilane Oliveira Gonçalves, Daniel Barbosa Liarte, Davi Alvarenga Lima, Frederico Gonçalves Guimarães, Daniela de Melo Resende, Ana Maria Murta Santi, Luciana Marcia de Oliveira, João Paulo Linhares Velloso, Renato Guimarães Delfin
    Parasites & Vectors.2020;[Epub]     CrossRef
  • An overview of leishmanization experience: A successful control measure and a tool to evaluate candidate vaccines
    Mehdi Mohebali, Abolhassan Nadim, Ali Khamesipour
    Acta Tropica.2019; 200: 105173.     CrossRef
  • Comparison of Cysteine Protease B Gene Expression between Clinical Isolates of Leishmania tropica, Leishmania major and Leishmania infantum
    Elham Kazemirad, Hossien Reisi Nafchi, Alireza Latifi, Reza Raoofian, Mehdi Mohebali, Homa Hajjaran
    Journal of Medical Microbiology and Infectious Diseases.2019; 7(3): 72.     CrossRef
  • Use of AFLP for the study of eukaryotic pathogens affecting humans
    Carlos M. Restrepo, Alejandro Llanes, Ricardo Lleonart
    Infection, Genetics and Evolution.2018; 63: 360.     CrossRef
  • Expression analysis of viscerotropic leishmaniasis gene in Leishmania species by real-time RT-PCR
    Hossein Reisi Nafchi, Elham Kazemi-Rad, Mehdi Mohebali, Reza Raoofian, Niloofar Bavarsad Ahmadpour, Mohammad Ali Oshaghi, Homa Hajjaran
    Acta Parasitologica.2016;[Epub]     CrossRef
  • Expression analysis of activated protein kinase C gene (LACK1) in antimony sensitive and resistant Leishmania tropica clinical isolates using real‐time RT‐PCR
    Homa Hajjaran, Elham Kazemi‐Rad, Mehdi Mohebali, Mohammad A. Oshaghi, Mohammad B. Khadem‐Erfan, Elham Hajaliloo, Hossein Reisi Nafchi, Reza Raoofian
    International Journal of Dermatology.2016; 55(9): 1020.     CrossRef
  • Visceral Leishmaniasis without Fever in an 11-Month-Old Infant: a Rare Clinical Feature of Kala-azar
    Shirin Sayyahfar, Shahla Ansari, Mehdi Mohebali, Babak Behnam
    The Korean Journal of Parasitology.2014; 52(2): 189.     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Overexpression of Ubiquitin and Amino Acid Permease Genes in Association with Antimony Resistance in Leishmania tropica Field Isolates
Korean J Parasitol. 2013;51(4):413-419.   Published online August 30, 2013
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Overexpression of Ubiquitin and Amino Acid Permease Genes in Association with Antimony Resistance in Leishmania tropica Field Isolates
Korean J Parasitol. 2013;51(4):413-419.   Published online August 30, 2013
Close

Figure

  • 0
  • 1
  • 2
Overexpression of Ubiquitin and Amino Acid Permease Genes in Association with Antimony Resistance in Leishmania tropica Field Isolates
Image Image Image
Fig. 1 Detection of GAPDH as the housekeeping gene (154 bp) by reverse transcriptase-PCR (RT-PCR) on agarose gel (1.5%). M, 50 bp (base pair) molecular weight marker; S, sensitive; R, resistant; NC, negative control.
Fig. 2 Expression patterns of TDFs extracted from cDNA-AFLP PAGE. Sensitive amplification of cDNA-AFLP on a PAGE from 3 different primer combinations of S3 MboI/S2 EcoRI, S3 MboI/S1 EcoRI, and S4 MboI/S4 MboI. Arrows point to differentially expressed TDFs which were isolated with code numbers of 1, 2, and 3 (associated genes which derived from these TDFs mentioned in Table 2). M, 50 bp molecular weight marker; S, sensitve; R, resistant.
Fig. 3 The relative expression levels of ubiquitin and amino acid permease (AAP3) genes in sensitive and resistant L. tropica isolates using real-time RT-PCR. The expression of GAPDH was used to normalize the data. Values given are the mean±SD of 3 different experiments (P<0.05). S, sensitive; R, resistant.
Overexpression of Ubiquitin and Amino Acid Permease Genes in Association with Antimony Resistance in Leishmania tropica Field Isolates
Name Sequences Adaptors and primers AD EcoR1 5´-ACCGACGTCGACTATCCATGAAG-3´ Adaptors ad EcoR1 5´-AATTCTTCATGG-3´ AD MboI 5´-CACTATCCAGACTCTCACCGCA-3´ ad MboI 5´-GATCTGCGGTGA-3´ Pre EcoR1 5´-ACCGACGTCGACTATCCATGAAGAATTC-3´ Pre-amplification primers Pre MboI 5´-CACTATCCAGACTCTCACCGCAGATC-3´ S1 EcoR1 5´-ACCGACGTCGACTATCCATGAAGAATTCC-3´ Sensitive primers S2 EcoR1 5´-ACCGACGTCGACTATCCATGAAGAATTCG-3´ S3 EcoR1 5´-ACCGACGTCGACTATCCATGAAGAATTCA-3´ S4 EcoR1 5´-ACCGACGTCGACTATCCATGAAGAATTCT-3´ S1 MboI 5´-CACTATCCAGACTCTCACCGCAGATCC-3´ S2 MboI 5´-CACTATCCAGACTCTCACCGCAGATCG-3´ S3 MboI 5´-CACTATCCAGACTCTCACCGCAGATCA-3´ S4 MboI 5´-CACTATCCAGACTCTCACCGCAGATCT-3´ GAPDH F 5´-GCATGTGCTGACAAAGGAGA-3´ Housekeeping gene primers GAPDH R 5´-GGTCGTACTCGGGATGATGT-3´ Ubiquitin F 5´-ATCACGCGCATCTCTCCTAC-3´ Target gene primers Ubiquitin R 5´-GTGGTGGTGTGGAGTCGAG-3´ AAP3 F 5´-GGTGTCATCTCGAACTGCTTC-3´ AAP3 R 5´-CACGAGGTAGATGACAGACATGA-3´ Code No. Accession No. Annotation Length (bp) E-value 1 XM-001685021.1 L. major amino acid permease (AAP3) gene 220 1e-69 2 XM-003721589.1 L. major hypothetical protein gene 215 2e-34 3 Z14232.1 L. major ubiquitin gene 147 5e-38
Table 1. Sequences of adaptors and primer used in cDNA-AFLP and real-time RT-PCR
Table 2. Differentially expressed transcription-derived fragments identified via cDNA-AFLP