Warning: fopen(/home/virtual/parasitol/journal/upload/ip_log/ip_log_2025-12.txt): failed to open stream: Permission denied in /home/virtual/lib/view_data.php on line 83

Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84
Rapid Detection and Identification of Wuchereria bancrofti, Brugia malayi, B. pahangi, and Dirofilaria immitis in Mosquito Vectors and Blood Samples by High Resolution Melting Real-Time P
Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Articles

Original Article

Rapid Detection and Identification of Wuchereria bancrofti, Brugia malayi, B. pahangi, and Dirofilaria immitis in Mosquito Vectors and Blood Samples by High Resolution Melting Real-Time P

The Korean Journal of Parasitology 2013;51(6):645-650.
Published online: December 31, 2013

1Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.

2Faculty of Medicine, Mahasarakham University, Mahasarakham 44000, Thailand.

3Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.

4Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Rangsit Campus, Pathum Thani 12121, Thailand.

5Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.

6Parasitology Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.

7Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.

8Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.

Corresponding author (wanch_ma@kku.ac.th)
• Received: May 30, 2013   • Revised: August 3, 2013   • Accepted: October 11, 2013

© 2013, Korean Society for Parasitology and Tropical Medicine

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 11,654 Views
  • 134 Download
  • 17 Crossref
  • 18 Scopus
prev next

Citations

Citations to this article as recorded by  Crossref logo
  • Beyond Tradition: Exploring Cutting-Edge Approaches for Accurate Diagnosis of Human Filariasis
    Damian Pietrzak, Julia Weronika Łuczak, Marcin Wiśniewski
    Pathogens.2024; 13(6): 447.     CrossRef
  • Detecting Dirofilaria immitis: Current Practices and Novel Diagnostic Methods
    Damian Pietrzak, Julia Weronika Łuczak, Marcin Wiśniewski
    Pathogens.2024; 13(11): 950.     CrossRef
  • IDENTIFICATION OF MICROFILARIAE USING CONVENTIONAL POLYMERASE CHAIN REACTION AND QPCR-HRM
    Bagus Muhammad Ihsan, Widyana Lakshmi Puspita, Linda Triana, Wahdaniah, Khayan, Cecep Dani Sucipto
    Journal of Vocational Health Studies.2024; 8(1): 42.     CrossRef
  • Mosquitoes, Lymphatic Filariasis, and Public Health: A Systematic Review of Anopheles and Aedes Surveillance Strategies
    Arumugam Bhuvaneswari, Ananganallur Nagarajan Shriram, Kishan Hari K. Raju, Ashwani Kumar
    Pathogens.2023; 12(12): 1406.     CrossRef
  • Microfilaria Positification Test Using Real-Time PCR Technique with HRM (High-Resolution Melting)
    Bagus Muhammad Ihsan, Afiat Berbudi, Ridad Agoes, Muhammad Ifham Hanif
    Acta Parasitologica.2022; 67(1): 496.     CrossRef
  • Collection and DNA Detection of Dirofilaria immitis (Rhabditida Onchocercidae), Using a Novel Primer Set, in Wild-Caught Mosquitoes From Gainesville, FL
    Chris Holderman, Nicole O Abruzzo, Noor A Abdelsamad, Phillip E Kaufman, Peter M DiGennaro, Stephen Rich
    Journal of Medical Entomology.2021; 58(3): 1429.     CrossRef
  • The use of molecular xenomonitoring for surveillance of mosquito-borne diseases
    Mary M. Cameron, Anita Ramesh
    Philosophical Transactions of the Royal Society B: Biological Sciences.2021; 376(1818): 20190816.     CrossRef
  • Canine and feline vector-borne diseases of zoonotic concern in Southeast Asia
    Viet-Linh Nguyen, Filipe Dantas-Torres, Domenico Otranto
    Current Research in Parasitology & Vector-Borne Diseases.2021; 1: 100001.     CrossRef
  • The Incidence of Dirofilaria immitis in Shelter Dogs and Mosquitoes in Austria
    Karin Sonnberger, Hans-Peter Fuehrer, Bernhard Werner Sonnberger, Michael Leschnik
    Pathogens.2021; 10(5): 550.     CrossRef
  • Membrane Technology for Rapid Point-of-Care Diagnostics for Parasitic Neglected Tropical Diseases
    Madeleine J. Rogers, Donald P. McManus, Stephen Muhi, Catherine A. Gordon
    Clinical Microbiology Reviews.2021;[Epub]     CrossRef
  • PRIMARY SLX TEST USING REAL-TIME PCR BASED ON HIGH RESOLUTION MELTING (HRM) ON MICROFILARIA EXAMINATION
    Bagus Muhammad Ihsan, Cecep Dani Sucipto, Khayan Khayan
    Journal of Vocational Health Studies.2021; 5(1): 26.     CrossRef
  • Molecular detection of Trichostrongylus species through PCR followed by high resolution melt analysis of ITS-2 rDNA sequences
    Mohsen Arbabi, Hossein Hooshyar, Majid Lotfinia, Mohamad Ali Bakhshi
    Molecular and Biochemical Parasitology.2020; 236: 111260.     CrossRef
  • Prevalence and risk factors associated with Dirofilaria immitis infection in dogs and cats in Songkhla and Satun provinces, Thailand
    Ketsarin Kamyingkird, Witchuta Junsiri, Witsanuwat Chimnoi, Chanya Kengradomkij, Sinsamut Saengow, Keplee Sangchuto, Wicha Kajeerum, Decha Pangjai, Burin Nimsuphan, Tawin Inpankeaw, Sathaporn Jittapalapong
    Agriculture and Natural Resources.2017; 51(4): 299.     CrossRef
  • Is molecular xenomonitoring of mosquitoes for Dirofilaria repens suitable for dirofilariosis surveillance in endemic regions?
    Aleksander Masny, Rusłan Sałamatin, Wioletta Rozej-Bielicka, Elzbieta Golab
    Parasitology Research.2016; 115(2): 511.     CrossRef
  • Pyrosequencing Using SL and 5S rRNA as Molecular Markers for Identifying Zoonotic Filarial Nematodes in Blood Samples and Mosquitoes
    Oranuch Sanpool, Chairat Tantrawatpan, Tongjit Thanchomnang, Penchom Janwan, Pewpan M. Intapan, Rutchanee Rodpai, Viraphong Lulitanond, Piyanan Taweethavonsawat, Wanchai Maleewong
    Vector-Borne and Zoonotic Diseases.2016; 16(5): 326.     CrossRef
  • Detection and quantification of Wuchereria bancrofti and Brugia malayi DNA in blood samples and mosquitoes using duplex droplet digital polymerase chain reaction
    Jurairat Jongthawin, Pewpan M. Intapan, Viraphong Lulitanond, Oranuch Sanpool, Tongjit Thanchomnang, Lakkhana Sadaow, Wanchai Maleewong
    Parasitology Research.2016; 115(8): 2967.     CrossRef
  • Trypanosome infection rates in tsetse flies in the “silent” sleeping sickness focus of Bafia in the Centre Region in Cameroon
    Gustave Simo, Pierre Fongho, Oumarou Farikou, Prosper Innocent Ndjeuto Ndjeuto-Tchouli, Judith Tchouomene-Labou, Flobert Njiokou, Tazoacha Asonganyi
    Parasites & Vectors.2015;[Epub]     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Rapid Detection and Identification of Wuchereria bancrofti, Brugia malayi, B. pahangi, and Dirofilaria immitis in Mosquito Vectors and Blood Samples by High Resolution Melting Real-Time P
Korean J Parasitol. 2013;51(6):645-650.   Published online December 31, 2013
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Rapid Detection and Identification of Wuchereria bancrofti, Brugia malayi, B. pahangi, and Dirofilaria immitis in Mosquito Vectors and Blood Samples by High Resolution Melting Real-Time P
Korean J Parasitol. 2013;51(6):645-650.   Published online December 31, 2013
Close

Figure

  • 0
  • 1
Rapid Detection and Identification of Wuchereria bancrofti, Brugia malayi, B. pahangi, and Dirofilaria immitis in Mosquito Vectors and Blood Samples by High Resolution Melting Real-Time P
Image Image
Fig. 1 Amplification plot of fluorescence (y-axis) vs cycle numbers (x-axis) showing the analytical sensitivity of HRM real-time PCR for detecting DNA of W. bancrofti (A), B. malayi (B), D. immitis (C), and B. pahangi (D) in control plasmids. (a-h) 10-fold dilutions of W. bancrofti plasmid from 9×107 to 9 copies/reaction (i) distilled water. (j-q) 10-fold dilutions of B.malayi plasmid from 2×107 to 2 copies/reaction (r) distilled water. (s-y) 10-fold dilutions of D. immitis plasmid from 107 to 10 copies/reaction (z) D. immitis plasmid 1 copy/reaction and distilled water. (I-VIII) 10-fold dilutions of B. pahangi plasmid from 4×107 to 4 copies/reaction (IX) distilled water.
Fig. 2 Representative melting curve analyses of the amplification products of W. bancrofti, B. malayi, D. immitis, and B. pahangi 5S rRNA gene and spliced leader sequence. The figure shows the melting curves of D. immitis plasmid DNA (106 copies) (a), D. immitis-infected blood sample (b), B. malayi plasmid DNA (2×104 copies) (c), B. malayi-infected blood sample (d), B. pahangi plasmid (4×104 copies) (e), B. pahangi-infected blood sample (f), W. bancrofti plasmid (9×104 copies) (g), W. bancrofti-infected blood sample (h), non-infected Ae. aegypti and Cx. quinquefasciatus, P. falciparum-infected and P. vivax-infected human red blood cells, non-infected cat, human, and dog blood samples, Babesia spp., and H. canis-infected dog blood DNA, respectively, and distilled water (all i).
Rapid Detection and Identification of Wuchereria bancrofti, Brugia malayi, B. pahangi, and Dirofilaria immitis in Mosquito Vectors and Blood Samples by High Resolution Melting Real-Time P
Samples (n) HRM results
Cn
Tm (ºC)
Range Mean ± SD Median Range Mean ± SD Median W. bancrofti infecteda (6) 23.2-36.3 29.0 ± 4.9 27.2 81.2-81.7 81.5 ± 0.2 81.6 B. malayi infectedb (6) 19.1-35.2 28.0 ± 6.2 25.7 78.1-79.3 79.0 ± 0.3 79.1 D. immitis infectedc (10) 21.0-25.7 22.7 ± 2.1 22 76.6-76.9 76.8 ± 0.1 76.8 B. pahangi infectedd (5) 19.1-25.5 22.7 ± 2.4 23.1 79.8-80.0 79.9 ± 0.1 79.9
Table 1. HRM real-time PCR showing cycle number (Cn) and melting temperatures (Tm) for the detection of Wuchereria bancrofti, Brugia malayi, Dirofilaria immitis, and Brugia pahangi in infected mosquitoes and blood samples

5 W. bancrofti-infected Cx. quinquefasciatus and 1 infected human sample.

5 B. malayi-infected Ae. togoi and 1 infected cat blood sample.

5 D. immitis-infected Ae. aegypti and 5 infected dog blood samples.

5 B. pahangi-infected dog blood samples.