Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Articles

Original Article

Complete Mitochondrial Genome of Haplorchis taichui and Comparative Analysis with Other Trematodes

The Korean Journal of Parasitology 2013;51(6):719-726.
Published online: December 31, 2013

1Department of Parasitology, Medical Research Institute and Parasite Resource Bank, Chungbuk National University School of Medicine, Cheongju 361-763, Korea.

2Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul 110-799, Korea.

3Department of Parasitology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-70-51, Korea.

4Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 120-752, Korea.

5Department of Immunology and Microbiology, Eulji University School of Medicine, Daejeon 301-746, Korea.

6Department of Parasitology, Korea University College of Medicine, Seoul 136-705, Korea.

Corresponding author (kseom@chungbuk.ac.kr)
• Received: June 21, 2013   • Revised: October 2, 2013   • Accepted: October 11, 2013

© 2013, Korean Society for Parasitology and Tropical Medicine

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 11,927 Views
  • 100 Download
  • 30 Crossref
  • 36 Scopus
prev next

Citations

Citations to this article as recorded by  Crossref logo
  • The complete mitochondrial genome of Aspidogaster ijimai (Platyhelminthes: Trematoda: Aspidogastrea): gene content and phylogenetic inference
    D. A. Solodovnik, D. M. Atopkin, A. A. Semenchenko, M. Urabe, S. G. Sokolov
    Invertebrate Zoology.2025; 22(3): 411.     CrossRef
  • Trematode species diversity in the faucet snail, Bithynia tentaculata at the western edge of its native distribution, in Ireland
    A. Faltýnková, K. O’Dwyer, C. Pantoja, D. Jouet, K. Skírnisson, O. Kudlai
    Journal of Helminthology.2024;[Epub]     CrossRef
  • Black spot diseases in seven commercial fish species from the English Channel and the North Sea: infestation levels, identification and population genetics of Cryptocotyle spp.
    Maureen Duflot, Pierre Cresson, Maéva Julien, Léa Chartier, Odile Bourgau, Marialetizia Palomba, Simonetta Mattiucci, Graziella Midelet, Mélanie Gay
    Parasite.2023; 30: 28.     CrossRef
  • A report on the complete mitochondrial genome of the trematode Azygia robusta Odhner, 1911, its new definitive host from the Russian Far East, and unexpected phylogeny of Azygiidae within Digenea, as inferred from mitogenome sequences
    D. M. Atopkin, A. A. Semenchenko, D. A. Solodovnik, Y. I. Ivashko
    Journal of Helminthology.2023;[Epub]     CrossRef
  • Mitophylogenomics of the zoonotic fluke Echinostoma malayanum confirms it as a member of the genus Artyfechinostomum Lane, 1915 and illustrates the complexity of Echinostomatidae systematics
    Linh Thi Khanh Pham, Weerachai Saijuntha, Scott P. Lawton, Thanh Hoa Le
    Parasitology Research.2022; 121(3): 899.     CrossRef
  • Characterization of complete mitochondrial genome and ribosomal operon forCarassotrema koreanumPark, 1938 (Digenea: Haploporidae) by means of next-generation sequencing data
    Y.I. Ivashko, A.A. Semenchenko, D.A. Solodovnik, D.M. Atopkin
    Journal of Helminthology.2022;[Epub]     CrossRef
  • Characterization of the complete mitochondrial genomes of Diplodiscus japonicus and Diplodiscus mehari (Trematoda: Diplodiscidae): Comparison with the members of the superfamily Paramphistomoidea and phylogenetic implication
    Qi An, Yang-Yuan Qiu, Yan Lou, Yan Jiang, Hong-Yu Qiu, Zhong-Huai Zhang, Ben Li, Ai-Hui Zhang, Wei Wei, Ying-Yu Chen, Jun-Feng Gao, Chun-Ren Wang
    International Journal for Parasitology: Parasites and Wildlife.2022; 19: 9.     CrossRef
  • The complete mitogenome of the Asian lung fluke Paragonimus skrjabini miyazakii and its implications for the family Paragonimidae (Trematoda: Platyhelminthes)
    Thanh Hoa Le, Khue Thi Nguyen, Linh Thi Khanh Pham, Huong Thi Thanh Doan, Takeshi Agatsuma, David Blair
    Parasitology.2022; 149(13): 1709.     CrossRef
  • Gene Duplication and Gain in the Trematode Atriophallophorus winterbourni Contributes to Adaptation to Parasitism
    Natalia Zajac, Stefan Zoller, Katri Seppälä, David Moi, Christophe Dessimoz, Jukka Jokela, Hanna Hartikainen, Natasha Glover, Dennis Lavrov
    Genome Biology and Evolution.2021;[Epub]     CrossRef
  • First next-generation sequencing data for Haploporidae (Digenea: Haploporata): characterization of complete mitochondrial genome and ribosomal operon for Parasaccocoelium mugili Zhukov, 1971
    Dmitry M. Atopkin, Alexander A. Semenchenko, Daria A. Solodovnik, Yana I. Ivashko, Kirill A. Vinnikov
    Parasitology Research.2021; 120(6): 2037.     CrossRef
  • Morphological and molecular identification of Cryptocotyle lingua metacercariae isolated from Atlantic cod (Gadus morhua) from Danish seas and whiting (Merlangius merlangus) from the English Channel
    Maureen Duflot, Mélanie Gay, Graziella Midelet, Per Walter Kania, Kurt Buchmann
    Parasitology Research.2021; 120(10): 3417.     CrossRef
  • Discovery of Carcinogenic Liver Fluke Metacercariae in Second Intermediate Hosts and Surveillance on Fish-Borne Trematode Metacercariae Infections in Mekong Region of Myanmar
    Ei Ei Phyo Myint, Amornpun Sereemaspun, Joacim Rocklöv, Choosak Nithikathkul
    International Journal of Environmental Research and Public Health.2020; 17(11): 4108.     CrossRef
  • Characterization of the mitochondrial genome sequences of the liver fluke Amphimerus sp. (Trematoda: Opisthorchiidae) from Ecuador and phylogenetic implications
    Jun Ma, Jun-Jun He, Cheng-Yan Zhou, Miao-Miao Sun, William Cevallos, Hiromu Sugiyama, Xing-Quan Zhu, Manuel Calvopiña
    Acta Tropica.2019; 195: 90.     CrossRef
  • The complete mitochondrial genome of Paragonimus ohirai (Paragonimidae: Trematoda: Platyhelminthes) and its comparison with P. westermani congeners and other trematodes
    Thanh Hoa Le, Khue Thi Nguyen, Nga Thi Bich Nguyen, Huong Thi Thanh Doan, Takeshi Agatsuma, David Blair
    PeerJ.2019; 7: e7031.     CrossRef
  • The Complete Mitochondrial Genome of the Caecal Fluke of Poultry, Postharmostomum commutatum, as the First Representative from the Superfamily Brachylaimoidea
    Yi-Tian Fu, Yuan-Chun Jin, Guo-Hua Liu
    Frontiers in Genetics.2019;[Epub]     CrossRef
  • The complete mitochondrial genome of Orthocoelium streptocoelium (Digenea: Paramphistomidae) for comparison with other digeneans
    Y.Y. Zhao, X. Yang, H.M. Chen, L.X. Wang, H.L. Feng, P.F. Zhao, L. Tan, W.Q. Lei, Y. Ao, M. Hu, R. Fang
    Journal of Helminthology.2017; 91(2): 255.     CrossRef
  • Molecular characterization and confocal laser scanning microscopic study of Pygidiopsis macrostomum (Trematoda: Heterophyidae) parasites of guppies Poecilia vivipara
    J N Borges, V S Costa, C Mantovani, E Barros, E G N Santos, C L Mafra, C P Santos
    Journal of Fish Diseases.2017; 40(2): 191.     CrossRef
  • Molecular characterization of the unique Mesostephanus appendiculatus (Trematoda: Cyathocotylidae) by small ribosomal RNA from Egypt
    Nasr M. El-Bahy, Eman K. Bazh, Shimaa S. Sorour, Nagwa M. Elhawary
    Parasitology Research.2017; 116(4): 1129.     CrossRef
  • Fishborne zoonotic heterophyid infections: An update
    Jong-Yil Chai, Bong-Kwang Jung
    Food and Waterborne Parasitology.2017; 8-9: 33.     CrossRef
  • Updated molecular phylogenetic data for Opisthorchis spp. (Trematoda: Opisthorchioidea) from ducks in Vietnam
    Thanh Thi Ha Dao, Thanh Thi Giang Nguyen, Sarah Gabriël, Khanh Linh Bui, Pierre Dorny, Thanh Hoa Le
    Parasites & Vectors.2017;[Epub]     CrossRef
  • Mitochondrial genome of Ogmocotyle sikae and implications for phylogenetic studies of the Notocotylidae trematodes
    Jun Ma, Jun-Jun He, Guo-Hua Liu, David Blair, Li-Zhi Liu, Yi Liu, Xing-Quan Zhu
    Infection, Genetics and Evolution.2016; 37: 208.     CrossRef
  • The complete mitochondrial genome of Metorchis orientalis (Trematoda: Opisthorchiidae): Comparison with other closely related species and phylogenetic implications
    Lu Na, Jun-Feng Gao, Guo-Hua Liu, Xue Fu, Xin Su, Dong-Mei Yue, Yuan Gao, Yan Zhang, Chun-Ren Wang
    Infection, Genetics and Evolution.2016; 39: 45.     CrossRef
  • Epidemiological and molecular data on heterophyid trematode metacercariae found in the muscle of grey mullets (Osteichthyes: Mugilidae) from Sardinia (western Mediterranean Sea)
    Simonetta Masala, Maria Cristina Piras, Daria Sanna, Jong-Yil Chai, Bong-Kwang Jung, Woon-Mok Sohn, Giovanni Garippa, Paolo Merella
    Parasitology Research.2016; 115(9): 3409.     CrossRef
  • Complete mitochondrial genome analysis of Clinostomum complanatum and its comparison with selected digeneans
    Lu Chen, Yan Feng, Hong-Mei Chen, Li-Xia Wang, Han-Li Feng, Xin Yang, Mudassar-Niaz Mughal, Rui Fang
    Parasitology Research.2016; 115(8): 3249.     CrossRef
  • Complete Mitochondrial Genome of Echinostoma hortense (Digenea: Echinostomatidae)
    Ze-Xuan Liu, Yan Zhang, Yu-Ting Liu, Qiao-Cheng Chang, Xin Su, Xue Fu, Dong-Mei Yue, Yuan Gao, Chun-Ren Wang
    The Korean Journal of Parasitology.2016; 54(2): 173.     CrossRef
  • Characterization of the complete mitochondrial genome sequence of Homalogaster paloniae (Gastrodiscidae, Trematoda) and comparative analyses with selected digeneans
    Xin Yang, Lixia Wang, Hanli Feng, Mingwei Qi, Zongze Zhang, Chong Gao, Chunqun Wang, Min Hu, Rui Fang, Chengye Li
    Parasitology Research.2016; 115(10): 3941.     CrossRef
  • A complete mitochondrial genome from Echinochasmus japonicus supports the elevation of Echinochasminae Odhner, 1910 to family rank (Trematoda: Platyhelminthes)
    Thanh Hoa Le, Nga Thi Bich Nguyen, Khue Thi Nguyen, Huong Thi Thanh Doan, Do Trung Dung, David Blair
    Infection, Genetics and Evolution.2016; 45: 369.     CrossRef
  • Mitochondrial and nuclear ribosomal DNA dataset supports that Paramphistomum leydeni (Trematoda: Digenea) is a distinct rumen fluke species
    Jun Ma, Jun-Jun He, Guo-Hua Liu, Dong-Hui Zhou, Jian-Zhi Liu, Yi Liu, Xing-Quan Zhu
    Parasites & Vectors.2015;[Epub]     CrossRef
  • Analysis of the complete Fischoederius elongatus (Paramphistomidae, Trematoda) mitochondrial genome
    Xin Yang, Yunyang Zhao, Lixia Wang, Hanli Feng, Li Tan, Weiqiang Lei, Pengfei Zhao, Min Hu, Rui Fang
    Parasites & Vectors.2015;[Epub]     CrossRef
  • Dicrocoelium chinensis and Dicrocoelium dendriticum (Trematoda: Digenea) are distinct lancet fluke species based on mitochondrial and nuclear ribosomal DNA sequences
    Guo-Hua Liu, Hong-Bin Yan, Domenico Otranto, Xing-Ye Wang, Guang-Hui Zhao, Wan-Zhong Jia, Xing-Quan Zhu
    Molecular Phylogenetics and Evolution.2014; 79: 325.     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Complete Mitochondrial Genome of Haplorchis taichui and Comparative Analysis with Other Trematodes
Korean J Parasitol. 2013;51(6):719-726.   Published online December 31, 2013
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Complete Mitochondrial Genome of Haplorchis taichui and Comparative Analysis with Other Trematodes
Korean J Parasitol. 2013;51(6):719-726.   Published online December 31, 2013
Close

Figure

  • 0
  • 1
  • 2
Complete Mitochondrial Genome of Haplorchis taichui and Comparative Analysis with Other Trematodes
Image Image Image
Fig. 1 A map of the complete mitochondrial genome of Haplorchis taichui. The primer sequences used for amplification of respective mitochondrial genes are indicated in the map.
Fig. 2 DNA sequences for 22 tRNA genes of H. taichui mtDNA folded into inferred secondary structures.
Fig. 3 Phylogenetic relationships among trematode parasites based on inferred amino acid sequences of 12 mitochondrial protein-coding gene loci for 11 species 14 individual using the outgroup, G. thymalli (GenBank accession no. NC_009682) by MP/ML/NJ/BP, respectively (branch length for ML).
Complete Mitochondrial Genome of Haplorchis taichui and Comparative Analysis with Other Trematodes
Gene/Region No. of
Codons
Positions
Nucleotides Amino acids Initiation Termination (5´-3´) cox3 657 218 ATG TAG 1-657 tRNA-H 66 660-725 cob 1,110 369 ATG TAG 732-1841 nad4L 264 87 ATG TAG 1843-2106 nad4 1,281 426 GTG TAA 2067-3347 tRNA-Q 66 3357-3422 tRNA-F 62 3427-3488 tRNA-M 64 3489-3552 atp6 516 171 ATG TAG 3553-4068 nad2 870 289 ATG TAA 4094-4963 tRNA-V 60 4968-5027 tRNA-A 63 5029-5091 tRNA-D 67 5094-5160 nad1 906 301 GTG TAG 5161-6066 tRNA-N 66 6069-6134 tRNA-P 64 6139-6202 tRNA-I 65 6199-6263 tRNA-K 65 6267-6331 nad3 360 119 ATG TAG 6332-6691 tRNA-S 62 6705-6766 tRNA-W 64 6774-6837 cox1 1,542 513 ATG TAG 6842-8383 tRNA-T 61 8385-8445 rrnL 979 8446-9424 tRNA-C 64 9426-9489 rrnS 747 9490-10236 cox2 624 207 ATG TAG 10237-10860 nad6 459 152 ATG TAG 10847-11305 tRNA-Y 67 11306-11372 tRNA-L1 66 11370-11435 tRNA-S2 64 11434-11497 tRNA-L2 70 11504-11573 tRNA-R 64 11585-11648 nad5 1,587 528 GTG TAA 11650-13236 tRNA-E 73 13248-13320 NR 1,710 13323-15032 tRNA-G 59 15035-15093 Gene Species
H.t S.s S.h S.m S.j S.ml S.mk F.h P.w O.f O.v C.s No. of amino acids  cox3 218 221 221 218 215 217 217 214 215 214 214 213  cob 369 364 367 365 372 373 373 371 373 371 369 370  nad4L 87 84 86 87 88 88 88 91 86 87 87 87  nad4 426 420 421 420 425 424 424 424 402 425 425 425  atp6 171 173 174 174 173 174 174 173 171 171 171 171  nad2 289 279 279 280 285 284 284 289 289 289 289 290  nad1 301 291 298 297 297 298 296 301 297 300 300 300  nad3 119 122 122 121 120 121 121 119 119 118 118 118  cox1 513 587 601 511 509 > 433 511 511 498 520 516 519  cox2 207 200 198 198 203 u 233 201 200 212 214 211  nad6 152 155 157 150 153 u 154 151 151 153 153 153  nad5 528 528 527 528 529 > 333 531 523 528 534 534 534 Amino acid similarity (%)  cox3 100 28.7 28.2 27.3 24.2 30.0 28.2 49.5 54.0 49.5 50.0 49.3  cob 100 48.5 51.1 52.9 54.9 53.0 53.8 75.6 75.9 82.4 77.8 80.5  nad4L 100 32.9 322.6 32.6 32.2 31.0 33.3 64.4 67.1 72.4 73.6 71.3  nad4 100 34.0 30.9 32.8 29.4 30.4 31.3 50.7 52.7 59.6 59.1 58.9  atp6 100 38.5 34.5 33.9 39.9 41.4 38.7 62.8 58.5 64.9 66.1 67.8  nad2 100 32.3 30.6 33.3 32.3 33.3 34.4 47.1 46.4 51.9 53.3 52.2  nad1 100 41.1 40.2 43.1 46.8 42.1 43.1 69.9 69.6 72.6 70.9 70.2  nad3 100 32.8 37.0 37.3 37.0 41.7 37.0 63.0 60.5 67.2 62.2 63.9  cox1 100 68.0 68.0 68.2 67.9 nc 66.5 74.7 78.5 76.8 78.9 78.0  cox2 100 44.6 42.6 45.8 45.4 nc 41.6 48.8 48.5 59.5 58.5 61.0  nad6 100 34.0 29. 34.2 35.7 nc 36.4 51.0 54.0 57.2 60.5 57.2  nad5 100 34.0 32.8 31.2 32.5 nc 32.4 52.0 50.3 46.5 44.6 46.0 Inferred initiation/termination codonacox3 A/G A/A A/G G/G A/G A/A A/G A/G A/G A/G A/G A/G  cob A/G A/G A/A G/G A/G A/A A/A A/G A/G A/G A/G A/G  nad4L A/G A/A A/A A/A A/A A/A A/A G/G G/G A/G A/G A/G  nad4 G/A A/A A/G A/A A/G A/A A/A G/A A/G A/G A/G G/G  atp6 A/G A/A A/G A/G A/A A/G A/A A/G A/G A/G A/G A/G  nad2 A/A A/A A/A G/A A/G A/G A/A A/G A/A A/G A/G G/G  nad1 G/G A/A A/G G/G A/G A/A A/A G/G A/G G/G G/G G/G  nad3 A/G A/A A/A A/G A/G A/G A/G A/G A/G G/G G/G G/G  cox1 A/G A/A A/G A/G G/G A/nc A/A A/G A/G G/G G/G G/A  cox2 A/G A/A A/G A/A A/A nc/nc A/A A/G A/G A/G A/G A/G  nad6 A/G A/G A/A A/A A/G nc/nc G/A A/G A/G A/G A/G G/A  nad5 G/A A/G A/G A/G A/G nc/G G/A G/G G/G A/G A/A G/A Species GenBank accession no. Base composition (%)
Total bp usage Total no. of codons T C A G A+T Schistosoma spindale DQ157223 45.2 7.0 28.1 19.7 73.3 10,308 3,424 Schistosoma haematobium DQ157222 44.9 7.6 27.8 19.5 72.7 10,389 3,451 Schistosoma mansoni NC_002545 45.6 8.2 23.3 23.0 68.9 10,083 3,349 Schistosoma japonicum NC_002544 48.3 8.0 23.0 20.7 71.3 10,143 3,369 Schistosoma malayensisa AAG60031 48.8 6.6 23.6 20.9 72.4 8,271 2,745 Schistosoma mekongi NC_002529 48.4 6.7 24.3 20.6 72.7 10,254 3,406 Fasciola hepatica NC_002546 49.4 9.6 14.2 26.8 63.6 10,140 3,368 Paragonimus westermani NC_002354 38.3 17.9 13.2 30.6 51.5 10,023 3,329 Opisthorchis felineus EU921260 45.3 12.1 15.3 27.2 60.6 10,217 3,394 Opisthorchis viverrini JF739555 44.9 12.3 15.5 27.3 60.4 10,206 3,390 Clonorchis sinensis FJ381664 45.1 11.9 15.7 27.3 60.8 10,209 3,391 Haplorchis taichui KF214770 43.0 11.9 17.1 28.0 60.1 10,176 3,380 AA Codon No. % AA Codon No. % AA Codon No. % AA Codon No. % AA Ab No. % Phe UUU(F) 308 9.19 Ser UCU(S) 96 2.87 Tyr UAU(Y) 136 4.06 Cys UGU(C) 98 3.93 Ala A 146 4.3 Phe UUC(F) 48 1.43 Ser UCC(S) 20 0.60 Tyr UAC(Y) 35 1.04 Cys UGC(C) 22 0.66 Cys C 101 3.0 Leu UUA(L) 145 4.33 Ser UCA(S) 22 0.66 *** UAA(*) 3 0.09 Trp UGA(W) 49 1.46 Asp D 71 2.1 Leu UUG(L) 204 6.09 Ser UCG(S) 34 1.01 *** UAG(*) 9 0.27 Trp UGG(W) 76 2.27 Glu E 78 2.3 Phe F 336 9.9 Leu CUU(L) 93 2.78 Pro CCU(P) 35 1.04 His CAU(H) 36 1.07 Arg CGU(R) 34 1.01 Gly G 303 9.0 Leu CUC(L) 23 0.69 Pro CCC(P) 16 0.48 His CAC(H) 8 0.24 Arg CGC(R) 7 0.21 His H 54 1.6 Leu CUA(L) 22 0.66 Pro CCA(P) 13 0.39 Gln CAA(Q) 8 0.24 Arg CGA(R) 8 0.24 Ile I 107 3.2 Leu CUG(L) 52 1.55 Pro CCG(P) 15 0.45 Gln CAG(Q) 17 0.51 Arg CGG(R) 31 0.93 Lys K 44 1.3 Leu L 565 16.7 Ile AUU(I) 98 2.93 Thr ACU(T) 47 1.40 Asn AAU(N) 33 0.99 Ser AGU(S) 63 1.88 Met M 186 5.5 Ile AUC(I) 14 0.42 Thr ACC(T) 11 0.33 Asn AAC(N) 6 0.18 Ser AGC(S) 14 0.42 Asn N 72 2.1 Met AUA(M) 65 1.94 Thr ACA(T) 9 0.27 Asn AAA(N) 33 0.99 Ser AGA(S) 31 0.93 Pro P 92 2.7 Met AUG(M) 108 3.22 Thr ACG(T) 16 0.48 Lys AAG(K) 41 1.22 Ser AGG(S) 62 1.85 Gln Q 24 0.7 Arg R 67 2.0 Val GUU(V) 171 5.10 Ala GCU(A) 70 2.09 Asp GAU(D) 51 1.52 Gly GGU(G) 100 2.99 Ser S 350 10.4 Val GUC(V) 32 0.96 Ala GCC(A) 18 0.54 Asp GAC(D) 15 0.45 Gly GGC(G) 40 1.19 Thr T 88 2.6 Val GUA(V) 58 1.73 Ala GCA(A) 10 0.30 Glu GAA(E) 15 0.45 Gly GGA(G) 49 1.46 Val V 402 11.9 Val GUG(V) 122 3.64 Ala GCG(A) 29 0.87 Glu GAG(E) 55 1.64 Gly GGG(G) 141 4.21 Trp W 118 3.5 Tyr Y 175 5.2
Table 1. Position and characteristics of protein-coding and non-coding sequences in the mt genome of Haplorchis taichui
Table 2. Properties of trematode mtDNA protein-coding genes and similarity comparison between Haplorchis taichui and other trematodes

Inferred initiation codons have not been determined for some genes and species (u, undetermined), and other genes for S. malayensis have yet to be characterized (nc, not characterized), giving rise to partial lengths for cox1 and nad5. H.t, Haplorchis taichui; S.s, Schistosoma spindale; S.h, S. haematobium; S.m, S. mansoni; S.j, S. japonicum; S.ml, S. malayensis; S.mk, S. mekongi; F.h, F. hepatica; P.w, Paragonimus westermani; O.f, Opisthorchis felineus; O.v, O. viverrini; C.s, Clonorchis sinensis.

A or G (TG)/(TA) A or G.

Table 3. Nucleotide content of protein-coding genes from complete or almost complete mitochondrial genomes of flatworms

S. malayensis is an incomplete mt genome.

Table 4. Nucleotide codon usage for 12 protein-encoding genes of the mitochondrial genome of Haplorchis taichui

AA, Amino acid; Ab, Abbreviation; No., Number of codons.