Warning: fopen(/home/virtual/parasitol/journal/upload/ip_log/ip_log_2025-12.txt): failed to open stream: Permission denied in /home/virtual/lib/view_data.php on line 83

Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84
Codon Usage Bias and Determining Forces in Taenia solium Genome
Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Articles

Original Article

Codon Usage Bias and Determining Forces in Taenia solium Genome

The Korean Journal of Parasitology 2015;53(6):689-697.
Published online: December 31, 2015

1College of Veterinary Medicine, Jilin University, Changchun, 130000, P. R. China

2State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, P. R. China

Xing Yang and Xusheng Ma contributed equally to this work.

• Received: May 16, 2015   • Revised: August 10, 2015   • Accepted: October 6, 2015

© 2015, Korean Society for Parasitology and Tropical Medicine

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 12,480 Views
  • 130 Download
  • 15 Web of Science
  • 15 Crossref
  • 15 Scopus
prev next

Citations

Citations to this article as recorded by  Crossref logo
  • Distinct codon usage signatures reflecting evolutionary and pathogenic adaptation in the Acinetobacter baumannii complex
    Ujwal Dahal, Anuj Sharma, Karan Paul, Anu Bansal, Shelly Gupta
    European Journal of Clinical Microbiology & Infectious Diseases.2025; 44(11): 2803.     CrossRef
  • Evolution of codon usage in Taenia saginata genomes and its impact on the host
    Siddiq Ur Rahman, Hassan Ur Rehman, Inayat Ur Rahman, Muazzam Ali Khan, Fazli Rahim, Hamid Ali, Dekun Chen, Wentao Ma
    Frontiers in Veterinary Science.2023;[Epub]     CrossRef
  • Comparative analysis of codon usage patterns and phylogenetic implications of five mitochondrial genomes of the genus Japanagallia Ishihara, 1955 (Hemiptera, Cicadellidae, Megophthalminae)
    Min Li, Jiajia Wang, Renhuai Dai, Guy Smagghe, Xianyi Wang, Siying You
    PeerJ.2023; 11: e16058.     CrossRef
  • Codon Usage is Influenced by Compositional Constraints in Genes Associated with Dementia
    Taha Alqahtani, Rekha Khandia, Nidhi Puranik, Ali M. Alqahtani, Yahia Alghazwani, Saad Ali Alshehri, Kumarappan Chidambaram, Mohammad Amjad Kamal
    Frontiers in Genetics.2022;[Epub]     CrossRef
  • Analysis of codon usage bias of lumpy skin disease virus causing livestock infection
    Siddiq Ur Rahman, Hassan Ur Rehman, Inayat Ur Rahman, Abdur Rauf, Abdulrahman Alshammari, Metab Alharbi, Noor ul Haq, Hafiz Ansar Rasul Suleria, Sayed Haidar Abbas Raza
    Frontiers in Veterinary Science.2022;[Epub]     CrossRef
  • Codon usage pattern in Gnetales evolved in close accordance with the Gnetifer hypothesis
    Aasim Majeed, Harpreet Kaur, Amitozdeep Kaur, Sreemoyee Das, Josepheena Joseph, Pankaj Bhardwaj
    Botanical Journal of the Linnean Society.2021; 196(4): 423.     CrossRef
  • Analysis of codon usage bias in mitochondrial CO gene among platyhelminthes
    Gulshana A. Mazumder, Arif Uddin, Supriyo Chakraborty
    Molecular and Biochemical Parasitology.2021; 245: 111410.     CrossRef
  • Genetic evolution and codon usage analysis of NKX-2.5 gene governing heart development in some mammals
    Arup Kr. Malakar, Binata Halder, Prosenjit Paul, Himangshu Deka, Supriyo Chakraborty
    Genomics.2020; 112(2): 1319.     CrossRef
  • Selection constraints determine preference for A/U-ending codons in Taxus contorta
    Aasim Majeed, Harpreet Kaur, Pankaj Bhardwaj
    Genome.2020; 63(4): 215.     CrossRef
  • Analysis of codon usage pattern of mitochondrial ND genes in Platyhelminthes
    Gulshana A. Mazumder, Arif Uddin, Supriyo Chakraborty
    Molecular and Biochemical Parasitology.2020; 238: 111294.     CrossRef
  • Compositional Analysis of Flatworm Genomes Shows Strong Codon Usage Biases Across All Classes
    Guillermo Lamolle, Santiago Fontenla, Gastón Rijo, Jose F. Tort, Pablo Smircich
    Frontiers in Genetics.2019;[Epub]     CrossRef
  • Compositional bias coupled with selection and mutation pressure drives codon usage in Brassica campestris genes
    Prosenjit Paul, Arup Kumar Malakar, Supriyo Chakraborty
    Food Science and Biotechnology.2018; 27(3): 725.     CrossRef
  • Whole genome analysis of codon usage in Echinococcus
    Lucas L. Maldonado, Georgina Stegmayer, Diego H. Milone, Guilherme Oliveira, Mara Rosenzvit, Laura Kamenetzky
    Molecular and Biochemical Parasitology.2018; 225: 54.     CrossRef
  • Comprehensive Analysis of Codon Usage on Rabies Virus and Other Lyssaviruses
    Xu Zhang, Yuchen Cai, Xiaofeng Zhai, Jie Liu, Wen Zhao, Senlin Ji, Shuo Su, Jiyong Zhou
    International Journal of Molecular Sciences.2018; 19(8): 2397.     CrossRef
  • Codon Usage Patterns of Tyrosinase Genes in Clonorchis sinensis
    Young-An Bae
    The Korean Journal of Parasitology.2017; 55(2): 175.     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Codon Usage Bias and Determining Forces in Taenia solium Genome
Korean J Parasitol. 2015;53(6):689-697.   Published online December 31, 2015
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Codon Usage Bias and Determining Forces in Taenia solium Genome
Korean J Parasitol. 2015;53(6):689-697.   Published online December 31, 2015
Close

Figure

  • 0
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
Codon Usage Bias and Determining Forces in Taenia solium Genome
Image Image Image Image Image Image Image
Fig. 1. The distribution of GC contents in T. solium genes. The GC content of the 8,484 T. solium genes (shown in blue) is unimodal.
Fig. 2. Correspondence analysis of relative synonymous codon usage (RSCU) for all 8,484 T. solium genes. (A) This panel shows the distribution of genes on the primary and secondary axes (accounting for 16.7% and 14.1% of the total variation, respectively). The 2 classes of genes (High GC and Low GC) are color coded; the high GC genes are shown in red and the low GC genes are shown in blue. (B) This panel shows the underlying distribution of codons on the same 2 axes. Codons ending with G or C are shown in red, and codons ending with A or U are shown in green.
Fig. 3. GC12 or ENC vs GC3s plot for 8,484 genes of T. solium. (A) GC12 vs GC3 plot (Neutrality plot analyses). The regression line is y=0.5513x+0.2196, R2=0.7309, OP=0.4894. The range of the GC3 values was 12.0%-93.4%. The cross point of the regression line and the diagonal line is defined as the optimum point (OP). (B) ENC versus GC3s plot (NC plot), the solid red line indicates the expected ENC. The ENC values of different genes ranged 21.5 to 61.0; values of GC3s ranged 10.8 to 93.3.
Fig. 4. Parity rule (PR2)-bias plot. The red open circle indicates the average position x=0.4340±0.0887 and y=0.4458±0.0927.
Fig. 5. Plot of ENC versus hydropathicity index and aromaticity score for T. solium genes.
Fig. 6. Plot of ENC versus protein length for T. solium.
Fig. 7. Plot of ENC versus intron number for T. solium.
Codon Usage Bias and Determining Forces in Taenia solium Genome
AA Codon N RSCU AA Codon N RSCU
Phe UUU 73863 0.96 Ser UCU 66945 1.09
UUC 80528 1.04 UCC 74835 1.22
Leu UUA 29081 0.45 UCA 62935 1.03
UUG 71331 1.10 UCG 54145 0.88
CUU 79963 1.23 Pro CCU 64730 1.10
CUC 91326 1.41 CCC 61128 1.04
CUA 40023 0.62 CCA 68271 1.16
CUG 77936 1.20 CCG 42041 0.71
Ile AUU 81264 1.29 Thr ACU 67286 1.12
AUC 73474 1.16 ACC 69492 1.16
AUA 34730 0.55 ACA 59130 0.99
Met AUG 85450 1.00 ACG 43999 0.73
Val GUU 70073 1.09 Ala GCU 89508 1.19
GUC 65525 1.02 GCC 84269 1.12
GUA 34933 0.54 GCA 71732 0.96
GUG 86210 1.34 GCG 54139 0.72
Tyr UAU 40934 0.80 Cys UGU 42340 0.98
UAC 61575 1.20 UGC 44305 1.02
TER UAA 2562 0.91 TER UGA 3493 1.24
UAG 2429 0.86 Trp UGG 44634 1.00
His CAU 47676 0.94 Arg CGU 55022 1.30
CAC 53846 1.06 CGC 50562 1.19
Gln CAA 77299 0.96 CGA 51124 1.21
CAG 83180 1.04 CGG 30983 0.73
Asn AAU 83583 1.06 Ser AGU 58100 0.95
AAC 74133 0.94 AGC 50685 0.83
Lys AAA 84273 0.91 Arg AGA 34529 0.82
AAG 99955 1.09 AGG 31888 0.75
Asp GAU 108334 1.09 Gly GGU 78723 1.35
GAC 90233 0.91 GGC 63945 1.10
Glu GAA 113616 0.91 GGA 58560 1.00
GAG 137061 1.09 GGG 31858 0.55
AA Codon tRNA gene High Low AA Codon tRNA gene High Low
Phe UUU AAA (NA) 0.69 (2047) 1.21 (2707) Ser UCU AGA (4) 0.88 (1710) 1.21 (2609)
UUC* GAA (2) 1.31 (3863) 0.79 (1751) UCC* GGA (NA) 1.59 (3088) 0.87 (1863)
Leu UUA TAA (4) 0.21 (492) 0.94 (1719) UCA TGA (2) 0.72 (1400) 1.40 (3003)
UUG CAA (NA) 0.87 (2090) 1.32 (2422) UCG* CGA (7) 1.00 (1937) 0.75 (1613)
CUU GAA (NA) 0.99 (2362) 1.32 (2405) Pro CCU AGG (2) 0.97 (1976) 1.20 (2262)
CUC* GAG (NA) 2.01 (4816) 0.76 (1397) CCC* GGG (NA) 1.39 (2820) 0.71 (1342)
CUA TAG (3) 0.45 (1068) 0.74 (1355) CCA TGG (2) 0.84 (1710) 1.49 (2806)
CUG* CAG (1) 1.47 (3525) 0.92 (1675) CCG* CGG (5) 0.79 (1607) 0.60 (1142)
Ile AUU AAT (3) 1.04 (2444) 1.39 (2828) Thr ACU AGT (1) 0.98 (2130) 1.17 (2287)
AUC* GAT (NA) 1.61 (3779) 0.79 (1613) ACC* GGT (NA) 1.53 (3327) 0.84 (1644)
AUA TAT (4) 0.35 (813) 0.82 (1668) ACA TGT (3) 0.73 (1593) 1.31 (2576)
Met AUG CAT (11) 1.00 (3403) 1.00 (2759) ACG CGT (1) 0.76 (1661) 0.68 (1341)
Val GUU AAC (1) 0.75 (1794) 1.32 (2544) Ala GCU AGC (NA) 1.05 (3038) 1.32 (2669)
GUC* GAC (NA) 1.20 (2893) 0.75 (1437) GCC* GGC (NA) 1.44 (4176) 0.79 (1590)
GUA UAC (2) 0.38 (903) 0.81 (1557) GCA TGC (1) 0.70 (2031) 1.30 (2630)
GUG* CAC (6) 1.68 (4040) 1.12 (2156) GCG* CGC (1) 0.82 (2383) 0.59 (1193)
Tyr UAU ATA (NA) 0.52 (1043) 1.10 (1609) Cys UGU ACA (NA) 0.82 (1326) 1.11 (1650)
UAC* GTA (3) 1.48 (2947) 0.90 (1306) UGC* GCA (1) 1.18 (1899) 0.89 (1314)
His CAU ATG (NA) 0.69 (1259) 1.19 (1850) Trp UGG CCA (11) 1.00 (1862) 1.00 (1138)
CAC* GTG (2) 1.31 (2371) 0.81 (1260) Arg CGU* ACG (4) 1.47 (2200) 0.88 (1097)
Gln CAA TTG (2) 0.73 (2009) 1.14 (3043) CGC* GCG (NA) 1.92 (2866) 0.60 (746)
CAG* CTG (8) 1.27 (3511) 0.86 (2285) CGA TCG (8) 1.05 (1569) 1.05 (1306)
Asn AAU ATT (NA) 0.82 (2145) 1.25 (3689) CGG CCG (4) 0.76 (1139) 0.60 (742)
AAC* GTT (1) 1.18 (3106) 0.75 (2193) Ser AGU ACT (NA) 0.83 (1603) 1.04 (2233)
Lys AAA TTT (4) 0.67 (2071) 1.11 (4356) AGC* GCT (5) 0.99 (1915) 0.74 (1581)
AAG* CTT (1) 1.33 (4138) 0.89 (3489) Arg AGA TCT (10) 0.34 (501) 1.70 (2115)
Asp GAU ATC (NA) 0.86 (2935) 1.26 (4243) AGG CCT (10) 0.46 (680) 1.17 (1462)
GAC* GTC (1) 1.14 (3888) 0.74 (2502) Gly GGU* ACC (NA) 1.38 (3213) 1.19 (2098)
Glu GAA TTC (2) 0.62 (2561) 1.12 (5859) GGC* GCC (3) 1.47 (3423) 0.77 (1357)
GAG* CTC (3) 1.38 (5755) 0.88 (4598) GGA TCC (6) 0.67 (1548) 1.39 (2450)
GGG CCC (3) 0.48 (1127) 0.65 (1140)
Table 1. Codon usage table in T. solium

Relative synonymous codon usage (RSCU) values were calculated by summing over all the genes. A total of 8,484 genes comprising 4,001,735 codons were analyzed. N is the number of codons, AA is the amino acid. Preferentially used codons are displayed in bold.

Table 2. Optimal codons and tRNA abundance in T. solium

Codon usage was compared using chi-squared contingency test to identify optimal codons. That occur significantly more often (P<0.01) are indicated with asterisk denote codons that occurred significantly more often (P<0.01). The number of codons in the high expressed genes was 143953; the number of codons in the low expressed genes was 129698.

denotes the codons that occurred significantly more often in the high expressed genes (P<0.01); they are the codons that were designated as ‘optimal’ codons. Thirteen (indicated by arrows) of the 26 optimal codons corresponded to the most abundant tRNAs in the T. solium genome.