Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Articles

Original Article

Sirtinol Supresses Trophozoites Proliferation and Encystation of Acanthamoeba via Inhibition of Sirtuin Family Protein

The Korean Journal of Parasitology 2022;60(1):1-6.
Published online: February 23, 2022

1Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea

2Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea

3Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul 02447, Korea

4Department of Parasitology, Dong-A University College of Medicine, Busan 49201, Korea

*Corresponding author (ychong@knu.ac.kr)
• Received: December 8, 2021   • Revised: January 17, 2022   • Accepted: January 27, 2022

© 2022, Korean Society for Parasitology and Tropical Medicine

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 4,794 Views
  • 252 Download
  • 5 Web of Science
  • 5 Crossref
  • 7 Scopus
next

Citations

Citations to this article as recorded by  Crossref logo
  • Pterostilbene: A natural neuroprotective stilbene with anti-Alzheimer's disease properties
    Songlan Gao, Honglei Zhang, Na Li, Lijuan Zhang, Zhe Zhu, Changlu Xu
    Journal of Pharmaceutical Analysis.2025; 15(4): 101043.     CrossRef
  • Alzheimer’s Disease: A Review of Molecular Mechanisms and Therapeutic Implications by Targeting Sirtuins, Caspases, and GSK-3
    Kalpana Pandya, Krishnashish Roul, Avanish Tripathi, Sateesh Belemkar, Anshuman Sinha, Meryem Erol, Devendra Kumar
    ACS Chemical Neuroscience.2025; 16(12): 2178.     CrossRef
  • Human Conjunctival Transcriptome in Acanthamoeba Keratitis: An Exploratory Study
    Gerami D. Seitzman, Jeremy D. Keenan, Thomas M. Lietman, Kevin Ruder, Lina Zhong, Cindi Chen, YuHeng Liu, Danny Yu, Thomas Abraham, Armin Hinterwirth, Thuy Doan
    Cornea.2024; 43(10): 1272.     CrossRef
  • Comparative cytotoxicity of Acanthamoeba castellanii-derived conditioned medium on human corneal epithelial and stromal cells
    Abdullah Alhazmi, Laura E. Sidney, Andy Hopkinson, Hany M. Elsheikha
    Acta Tropica.2024; 257: 107288.     CrossRef
  • Biological characteristics and pathogenicity of Acanthamoeba
    Yuehua Wang, Linzhe Jiang, Yitong Zhao, Xiaohong Ju, Le Wang, Liang Jin, Ryan D. Fine, Mingguang Li
    Frontiers in Microbiology.2023;[Epub]     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Sirtinol Supresses Trophozoites Proliferation and Encystation of Acanthamoeba via Inhibition of Sirtuin Family Protein
Korean J Parasitol. 2022;60(1):1-6.   Published online February 23, 2022
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Sirtinol Supresses Trophozoites Proliferation and Encystation of Acanthamoeba via Inhibition of Sirtuin Family Protein
Korean J Parasitol. 2022;60(1):1-6.   Published online February 23, 2022
Close

Figure

  • 0
  • 1
Sirtinol Supresses Trophozoites Proliferation and Encystation of Acanthamoeba via Inhibition of Sirtuin Family Protein
Image Image
Fig. 1 Effects of sirtinol on the proliferation and encystation of A. castellanii trophozoites. (A) Trophozoites were incubated with various concentrations of sirtinol or DMSO (control). For each sirtinol or DMSO concentration, the data represent the mean cell number at 48 hr after incubation. (B) Effects of sirtinol on A. castellanii trophozoite encystation. A. castellanii trophozoites were transferred into an encystation medium containing 200-μM sirtinol and incubated for 24 hr. The mature cysts were counted under a microscope, followed by treatment with sarkosyl. DMSO was used as solvent control. (C) Transcriptional changes in CSCP in encysting AcSir2-overexpressing cells. AcSir2-overexpressing trophozoites (0 hr) and encysting cells at 24, 48, and 72 hr after encystation induction were examined for transcriptional changes in CSCP using qRT-PCR. CSCP transcriptional levels were normalized to that of Acanthamoeba actin. (D) Effects of sirtinol on transcription levels in CS and CSCP during the encystation process. Trophozoites were transferred into an encystation medium containing 100-μM sirtinol, incubated for 24 hr, examined for transcriptional changes in CS and CSCP using qRT-PCR, and compared to those of DMSO-treated cells. **P<0.01, ***P<0.001, and ****P<0.0001.
Fig. 2 Inhibition of A. castellanii encystation using sirtinol treatment. Ultrastructural changes following treatment with sirtinol in the encysting of A. castellanii. Encystation was induced by transferring cells into an encystation medium containing DMSO (A, D), 100 μM sirtinol (B, E), or salermide (C, F) for 24 hr. The encystation medium also received the same amount of DMSO (as a solvent control). The black arrowhead, empty arrowhead, and black double-headed arrows, and black arrows indicate the exocyst wall, endocyst wall, intercyst space, and autophagosome-like structures, respectively. Scale-bar: 1 μM.
Sirtinol Supresses Trophozoites Proliferation and Encystation of Acanthamoeba via Inhibition of Sirtuin Family Protein