Warning: fopen(/home/virtual/parasitol/journal/upload/ip_log/ip_log_2025-12.txt): failed to open stream: Permission denied in /home/virtual/lib/view_data.php on line 83

Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84
Leishmania Vaccines: the Current Situation with Its Promising Aspect for the Future
Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Articles

Mini Review

Leishmania Vaccines: the Current Situation with Its Promising Aspect for the Future

The Korean Journal of Parasitology 2022;60(6):379-391.
Published online: December 22, 2022

INVAMED RD Global, Mutlukent Mah, 1961 Cd. No.27 Cankaya, Ankara 06810, Turkey

*Corresponding author (rasitdinc@hotmail.com)
• Received: September 9, 2022   • Revised: December 9, 2022   • Accepted: November 25, 2022

© 2022, Korean Society for Parasitology and Tropical Medicine

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 6,040 Views
  • 211 Download
  • 43 Web of Science
  • 49 Crossref
  • 47 Scopus
next

Citations

Citations to this article as recorded by  Crossref logo
  • Identification of novel anti‐leishmanials targeting glutathione synthetase of the parasite: a drug repurposing approach
    Manash Sarma, Kushal Bora, Preeti Ranjan, Vikash Kumar Dubey
    FEBS Letters.2025; 599(3): 367.     CrossRef
  • Molecular Mechanisms of Cell Death in Leishmania donovani Induced by Selected Steroidal Alkaloids
    Naveena Menpadi, Pranjal Chandra, Vikash Kumar Dubey
    Journal of Basic Microbiology.2025;[Epub]     CrossRef
  • Key Facets for the Elimination of Vector-Borne Diseases Filariasis, Leishmaniasis, and Malaria
    Rini Chaturvedi, Amit Sharma
    ACS Infectious Diseases.2025; 11(2): 287.     CrossRef
  • Human migrations, anthropogenic changes, and insect-borne diseases in Latin America
    André B. B. Wilke, Priscilla Farina, Marco Ajelli, Angelo Canale, Filipe Dantas-Torres, Domenico Otranto, Giovanni Benelli
    Parasites & Vectors.2025;[Epub]     CrossRef
  • Vaccines in Dermatology—Present and Future: A Review
    Eyan Goh, Jean-Marc Chavatte, Raymond T. P. Lin, Lisa F. P. Ng, Laurent Rénia, Hazel H. Oon
    Vaccines.2025; 13(2): 125.     CrossRef
  • Structure‐based Virtual Screening and Drug Design Development of Leishmanicidal Pyrimidines
    Gerliny Bezerra de Oliveira, Érick Caique Santos Costa, Zenaide Severina do Monte, Gleybson Correia de Almeida, Emerson Peter da Silva Falcão, Luciana Scotti, Marcus Tullius Scotti, Ricardo Oliveira Silva, Daniele Santana de Sousa Oliveira, Policarpo Adem
    Chemistry & Biodiversity.2025;[Epub]     CrossRef
  • Attitudes and acceptance of vaccination against neglected tropical diseases: A multi-country study in Asia
    Li Ping Wong, Hai Yen Lee, Haridah Alias, Farhana Nishat Seheli, Abhishek Lachyan, Di Khanh Nguyen, Jamil Ahmed, Zhijian Hu, Yulan Lin
    Human Vaccines & Immunotherapeutics.2025;[Epub]     CrossRef
  • Vaccine Designing Technology against Leishmaniasis: Current Challenges and Implication
    Jyoti Gupta, Yukta Menon, Subodh Kumar, Chakresh Kumar Jain
    Current Drug Discovery Technologies.2025;[Epub]     CrossRef
  • Cutaneous Leishmaniasis in the Context of Global Travel, Migration, Refugee Populations, and Humanitarian Crises
    Janice Kim, Tarek Zieneldien, Sophia Ma, Bernard A. Cohen
    Clinics and Practice.2025; 15(4): 77.     CrossRef
  • Histone Deacetylase Inhibitors Show a Potential Leishmanicidal Effect against Leishmania braziliensis in a Mouse Infection Model and Lead to Less Toxicity than Glucantime
    Luciana Ângelo de Souza, Lethícia Kelly Ramos Andrade, Joice de Melo Agripino, Victor Hugo Ferraz da Silva, Sabrina de Oliveira Emerick, Adriana Carneiro da Silva, Larissa Coelho Pereira, Graziela Domingues de Almeida Lima, Ingrid Rabite Garcia, Anna Cláu
    ACS Omega.2025; 10(19): 19466.     CrossRef
  • Leishmania regulates host YY1: Comparative proteomic analysis identifies infection modulated YY1 dependent proteins
    Harsimran Kaur Brar, Eleanor Chen, Fabian Chang, Shawna Angel Lu, Dilraj Kaur Longowal, Kyung-Mee Moon, Leonard J. Foster, Neil Reiner, Devki Nandan, Filomena de Nigris
    PLOS One.2025; 20(5): e0323227.     CrossRef
  • Computational vaccine development against protozoa
    Omar Hashim, Isabelle Dimier-Poisson
    Computational and Structural Biotechnology Journal.2025; 27: 2386.     CrossRef
  • Control measures for neglected tropical diseases: vaccine updates
    Vivek P. Chavda, Suneetha Vuppu, Toshika Mishra, Nikita Sharma, Sathvika Kamaraj, Shatakshi Mishra, Bhumi Sureshbhai, John Matsoukas, Vasso Apostolopoulos
    Expert Review of Vaccines.2025; 24(1): 535.     CrossRef
  • Attitudes and acceptance of mRNA-based vaccine for neglected tropical diseases: A multi-country study in Asia
    Li Ping Wong, Hai Yen Lee, Haridah Alias, Di Khanh Nguyen, Abhishek Lachyan, Farhana Nishat Seheli, Jamil Ahmed, Zhijian Hu, Yulan Lin
    Human Vaccines & Immunotherapeutics.2025;[Epub]     CrossRef
  • Development of vaccines against Leishmania mexicana: a reverse vaccinology approach
    Isis Pérez-Concepción, Iván Corona Guerrero, Angela Corina Hayano Kanashiro, Nohemí Gámez Meza, Armando Tejeda-Mansir
    Biotecnia.2025; 27: e2537.     CrossRef
  • A Human Monoclonal Antibody Targeting α-Gal Ameliorates Experimental Cutaneous Leishmaniasis
    Hyeseon Cho, Andrea Paun, Youngsil Seo, Sang Hun Lee, Maria Traver, Ming Zhao, Jeff Skinner, Joshua Tan, David L Sacks, Peter D Crompton
    The Journal of Infectious Diseases.2025;[Epub]     CrossRef
  • Advances in recombinant protein vaccines against Leishmania infantum: a systematic review of vaccinal constructs and delivery strategies
    André Zaidan Martins, Ana Laura Grossi de Oliveira, Lilian Lacerda Bueno, Fabrício Marcus Silva Oliveira, Ricardo Toshio Fujiwara
    Acta Tropica.2025; 270: 107796.     CrossRef
  • The impact of probiotic administration in vivo on peritoneal mouse macrophages infected by Leishmania amazonensis ex vivo
    Lauren Van den Broeck, Raquel Silva de Azevedo, Ludmila Ferreira de Almeida Fiuza, Marcos Meuser Batista, Cynthia Machado Cascabulho, Ewout Van de Velde, Serge Van Calenbergh, Guy Caljon, Maria de Nazaré Correia Soeiro
    Memórias do Instituto Oswaldo Cruz.2025;[Epub]     CrossRef
  • In silico design and assessment of a multiepitope and multiantigen potential vaccine candidate against Leishmania donovani
    Satabdi Saha, Sahina Laskar, Seshan Gunalan, Gugan Kothandan, Diwakar Kumar
    In Silico Pharmacology.2025;[Epub]     CrossRef
  • Understanding Sex-biases in Kinetoplastid Infections: Leishmaniasis and Trypanosomiasis
    Olivia Battistoni, Ryan H. Huston, Chaitenya Verma, Thalia Pacheco-Fernandez, Sara Abul-Khoudoud, Alison Campbell, Abhay R. Satoskar
    Expert Reviews in Molecular Medicine.2025;[Epub]     CrossRef
  • Luring the vector: A systematic review of sand fly attractants
    Panagiota Tsafrakidou, Arsen Gkektsian, Michael Miaoulis, Lee W. Cohnstaedt, Alexandra Chaskopoulou
    Current Research in Parasitology & Vector-Borne Diseases.2025; 8: 100325.     CrossRef
  • Intracellular Parasitic Infections Caused by Plasmodium falciparum, Leishmania spp., Toxoplasma gondii, Echinococcus multilocularis, Among Key Pathogens: Global Burden, Transmission Dynamics, and Vaccine Advances—A Narrative Review with Contextual Insight
    Tatevik Sargsyan, Lala Stepanyan, Avetis Tsaturyan, Rosanna Palumbo, Caterina Vicidomini, Giovanni N. Roviello
    Vaccines.2025; 13(11): 1082.     CrossRef
  • Repurposing Acetylcholinesterase Inhibitors for Leishmaniasis: Donepezil Hydrochloride and Related Compounds Against the American Tegumentary Form
    Daniela E. Barraza, Emilse N. Araoz, María A. Occhionero, Daniela A. Gaspar, Eliana G. Guevara, María E. Vázquez, Brenda A. Zabala, Paola A. Barroso, Cecilia Pérez Brandán, Carlos J. Minahk, Leonardo Acuña
    Antibiotics.2025; 14(12): 1182.     CrossRef
  • Genetic Manipulation Tools in Leishmania: From CRISPR/Cas9 to Vaccine Strategies for Disease Control
    Merve Gundogdu, Zeynep Islek
    Acta Parasitologica.2025;[Epub]     CrossRef
  • Cutaneous leishmaniasis: immunological insights and clinical challenges
    Héctor Serrano-Coll, Lucero Katherine Aristizábal Parra, Graciela Olarte, Carolina Salamanca-Leguizamón
    Colombia Medica.2025; 56(3): e3006750.     CrossRef
  • CRISPR-Cas13b mediated gene knockdowns in Leishmania infantum
    Marine Queffeulou, Raouia Fakhfakh, Fereshteh Fani, Alex Dos Santos, Gabriel Reis Ferreira, Sophia Bigot, Chantal Godin, Philippe Leprohon, Barbara Papadopoulou, Marc Ouellette
    International Journal for Parasitology: Drugs and Drug Resistance.2025; : 100629.     CrossRef
  • Memory T cells: promising biomarkers for evaluating protection and vaccine efficacy against leishmaniasis
    Mahmoud Nateghi-Rostami, Yahya Sohrabi
    Frontiers in Immunology.2024;[Epub]     CrossRef
  • GSK-3 kinase a putative therapeutic target in trypanosomatid parasites
    Alfredo Prado Diaz, Cristian Alejandro Meneses Canal, Alvaro José Valdés, Jaider Elian Giraldo Delgado, RE Varela-M
    The Brazilian Journal of Infectious Diseases.2024; 28(2): 103736.     CrossRef
  • Live attenuated-nonpathogenic Leishmania and DNA structures as promising vaccine platforms against leishmaniasis: innovations can make waves
    Negar Seyed, Tahereh Taheri, Sima Rafati
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Dual Antitubercular and Antileishmanial Profiles of Quinoxaline Di-N-Oxides Containing an Amino Acidic Side Chain
    Juan F. González, María-Auxiliadora Dea-Ayuela, Lena Huck, José María Orduña, Francisco Bolás-Fernández, Elena de la Cuesta, Nazia Haseen, Ashraf Ali Mohammed, J. Carlos Menéndez
    Pharmaceuticals.2024; 17(4): 487.     CrossRef
  • The role of CD4+ T cells in visceral leishmaniasis; new and emerging roles for NKG7 and TGFβ
    Jinrui Na, Christian Engwerda
    Frontiers in Cellular and Infection Microbiology.2024;[Epub]     CrossRef
  • Pilot-Scale Screening of Clinically Approved Drugs to Identify Uridine Insertion/Deletion RNA Editing Inhibitors in Trypanosoma brucei
    Mojtaba Rostamighadi, Arezou Kamelshahroudi, Vanessa Pitsitikas, Kenneth A. Jacobson, Reza Salavati
    ACS Infectious Diseases.2024; 10(9): 3289.     CrossRef
  • Effect of Leishmania infantum infection on B cell lymphopoiesis and memory in the bone marrow and spleen
    Laura Dirkx, Marlotte Loyens, Sara I. Van Acker, Dimitri Bulté, Mathieu Claes, Magdalena Radwanska, Stefan Magez, Guy Caljon
    The FASEB Journal.2024;[Epub]     CrossRef
  • In silico and in vitro evaluation of the immunogenic potential of Leishmania donovani ascorbate peroxidase and its derived peptides
    Shobha Kumari, Saravanan Vijaykumar, Vikash Kumar, Ravi Ranjan, Dayakar Alti, Veer Singh, Ghufran Ahmed, Ganesh Chandra Sahoo, Krishna Pandey, Ashish Kumar
    Acta Tropica.2024; 260: 107381.     CrossRef
  • The Major Role of T Regulatory Cells in the Efficiency of Vaccination in General and Immunocompromised Populations: A Review
    Stanislaw Stepkowski, Dulat Bekbolsynov, Jared Oenick, Surina Brar, Beata Mierzejewska, Michael A. Rees, Obi Ekwenna
    Vaccines.2024; 12(9): 992.     CrossRef
  • Prospects and Challenges of Genetically Modified Live-Attenuated Leishmania Vaccines
    Suman Karmakar, Mousumi Das, Monalisa Ray, Soumyadip Mukherjee, Sanhita Ghosh, Kamalika Roy, Chiranjib Pal
    Zoonoses.2024;[Epub]     CrossRef
  • A review of leishmaniasis: current knowledge and future directions of heterocyclic molecules
    Tejaswini Masne, Dileep Kumar, Deepali Bansode
    Exploration of Drug Science.2024; : 508.     CrossRef
  • A squalene oil emulsified MPL-A and anti-CD200/CD300a antibodies adjuvanted whole-killed Leishmania vaccine provides durable immunity against L. donovani parasites
    Baishakhi Mahapatra, Abhishek Singh, Arpita Banerjee, Shruti Sirohi, Samer Singh, Vikash K. Dubey, Rakesh K. Singh
    Vaccine.2024; 42(26): 126373.     CrossRef
  • C57BL/6 Peritoneal Macrophage Exosomes Improve Antileishmanial Functions of the RAW264.7 Cells
    Hadis Gandomkar, Mostafa Changaei, Mir Mohammadreza Hosseini, Sara Soudi, Ahmad Zavaran Hosseini
    Parasite Immunology.2024;[Epub]     CrossRef
  • India should invest in the expansion of genomic epidemiology for vector-borne diseases filariasis, malaria and visceral leishmaniasis that are targeted for elimination
    Nandini Singh, Amit Sharma
    IJID Regions.2024; 13: 100453.     CrossRef
  • Advances in Leishmania Vaccines: Current Development and Future Prospects
    Andreina Ayala, Alejandro Llanes, Ricardo Lleonart, Carlos M. Restrepo
    Pathogens.2024; 13(9): 812.     CrossRef
  • Development and application of species ID and insecticide resistance assays, for monitoring sand fly Leishmania vectors in the Mediterranean basin and in the Middle East
    Sofia Balaska, Jahangir Khajehali, Konstantinos Mavridis, Mustafa Akiner, Kyriaki Maria Papapostolou, Latifa Remadi, Ilias Kioulos, Michail Miaoulis, Emmanouil Alexandros Fotakis, Alexandra Chaskopoulou, John Vontas, Yara M. Traub-Csekö
    PLOS Neglected Tropical Diseases.2024; 18(12): e0012408.     CrossRef
  • A Review of the Progress in the Development of Leishmaniasis Vaccines
    Narges Khaghanzadeh, Fatemeh Javadi, Afshin Samiei
    Journal of Ardabil University of Medical Sciences.2024; 24(2): 129.     CrossRef
  • A minor emphasis on the outbreak of cutaneous leishmaniasis after devastating earthquakes in Turkey
    Ilknur Nihal Ardic, Nurittin Ardic
    Asian Pacific Journal of Tropical Medicine.2023; 16(3): 97.     CrossRef
  • Immunotherapy and immunochemotherapy in combating visceral leishmaniasis
    Ganesh Yadagiri, Aakriti Singh, Kanika Arora, Shyam Lal Mudavath
    Frontiers in Medicine.2023;[Epub]     CrossRef
  • Efficacy of an Immunotherapy Combining Immunogenic Chimeric Protein Plus Adjuvant and Amphotericin B against Murine Visceral Leishmaniasis
    Danniele L. Vale, Camila S. Freitas, Vívian T. Martins, Gabriel J. L. Moreira, Amanda S. Machado, Fernanda F. Ramos, Isabela A. G. Pereira, Raquel S. Bandeira, Marcelo M. de Jesus, Grasiele S. V. Tavares, Fernanda Ludolf, Miguel A. Chávez-Fumagalli, Alexs
    Biology.2023; 12(6): 851.     CrossRef
  • Evaluation of murine OX40L-murine IgG1(MM1) fusion protein on immunogenicity against L. mexicana infection in BALB/c mice
    Hossein Rezvan, Selman A. Ali, Sahar Hamoon Navard, Robert Rees
    Comparative Immunology, Microbiology and Infectious Diseases.2023; 99: 102011.     CrossRef
  • Leishmania infection upregulates and engages host macrophage Argonaute 1, and system-wide proteomics reveals Argonaute 1-dependent host response
    Atieh Moradimotlagh, Stella Chen, Sara Koohbor, Kyung-Mee Moon, Leonard J. Foster, Neil Reiner, Devki Nandan
    Frontiers in Immunology.2023;[Epub]     CrossRef
  • Recent Patents in the Treatment and Prevention of Leishmaniasis
    Sukhbir K Shahid
    Pharmaceutical Patent Analyst.2023; 12(5): 237.     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Leishmania Vaccines: the Current Situation with Its Promising Aspect for the Future
Korean J Parasitol. 2022;60(6):379-391.   Published online December 22, 2022
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Leishmania Vaccines: the Current Situation with Its Promising Aspect for the Future
Korean J Parasitol. 2022;60(6):379-391.   Published online December 22, 2022
Close

Figure

  • 0
Leishmania Vaccines: the Current Situation with Its Promising Aspect for the Future
Image
Fig. 1 Schematic depiction briefing the immunological response against Leishmania infection (Modified from Pacheco-Fernandez et al. [36], with permission). (A) Immunological response in live/attenuated Leishmania vaccination. 1) Injection of live/attenuated parasites, 2) Transforming promastigotes into amastigotes, 3) Internalization of the amastigotes by dendritic cells, 4) Presentation to T cells in the draining lymph nodes by dendritic cells, 5) Differentiation of T cells into effector and memory T cells, 6) Prevention of transmission to the sand fly because of long-term protective immunity. (B) Immunological response in Leishmania vaccination using DNA, recombinant antigen (Ag), or subunit Ag. 1) Injection of DNA, recombinant Ag, or subunit Ag, 2) Encountering of antigens and dendritic cells, 3) Internalization of the antigens by dendritic cells, 4) Presentation to T cells in the draining lymph nodes by dendritic cells, 5) Differentiation T cells into the effector and memory T cells, 6) Prevention of transmission to the sand fly because of long-term protective immunity. CD4+ TEff: effector T helper cell, CD4+ TMem: memory T helper cell, CD4+ TCent Mem: central memory T helper cell, Tissue TRes Mem: tissue residence memory T cell, effector T helper cell, and CD8+ TEff: effector cytotoxic T cell.
Leishmania Vaccines: the Current Situation with Its Promising Aspect for the Future

Several example for given properties of different types of Leishmania vaccines [21,51,8486]

Type of vaccines Essential component Clinical form Benefits Concerns
Leishmanization Live and virulent L. major or L. tropica CL Single dose
Long-term and strong immunity
Not safe
Killed vaccines Killed Leishmania species CL Safer than live vaccines Less powerful than live vaccines
Require multiple doses
Live genetically modified vaccines (avirulent) BT1−/−
Ldp27−/−
HSP70-II nul
KHARON1
Cen−/−
VL
VL; cross-protection for CL and MCL
CL, VL
VL
CL, VL
Safer than general live vaccines
Stimulate immune system as in natural infection
Don’t require multiple doses
Risk of reversion to virulent state
Need cold chain for transportation
Recombinant and subunit vaccines

Recombinant LEISH-F1, LIESH-F2 and LEISH-F3

LdA2, Ldp27, eIF-2, NH, CPA, CPB, SMT, H1, HSP, LACK

Sand fly saliva antigens: LJM19, LJL143, PdSP15

CL, VL
CL, MCL, VL
CL, MCL, VL
No risk
Induce strong immune response
Need cold chain for transportation
Need adjuvant
DNA vaccines

A2, LACK, TSA + LmSTI1, gp63, KMP-11, CPB, NH36, LeIF, gp63+HSP70, MIDGE-Th1 vectors encoding conserved T-cell epitopes from KMP11, TSA, CPA and CPB

Semian Adenovirus expressing NH and SMT

CL, VL
PKDL
Safe
No need adjuvant
Elicit antigen-specific immune responses
Low potency in humans
Live nonpathogenic vaccines (avirulent) L. tarentolae VL Life-long immunity
No reversion to virulent state
Cross-protetion between species
Unknown memory formation and duration
Need cold chain for transportation

CL, Cutaneous leishmaniasis; VL, visceral leishmaniasis; MCL, Cutaneous leishmaniasis; PKDL, post-kala-azar dermal leishmaniasis; BCG, Bacillus Calmette Guerin; BT1, Biopterin transporter 1; Ldp27, L. donovani amastigote specific protein p27; Cen, centrin; HSP, Heat-schok protein; A2, Amastigote specific protein 2; LACK, Leishmania homolog of receptors for activated c-kinase; CPA or B, Cysteine peptidase A or B; NH, Nucleoside hydrolase; SMT, Sterol 24-c-methyltransferase; H1, Histone-1; LJM19, A L. longipalpis salivary protein; LJL143, A L. longipalpis salivary protein; PdSP15, P. duboscqi salivary protein-15; KMH-11, Kinetoplastid membrane protein 11; TSA, Thiol-specific antioxidant; gp63, Gikoprotein63; LmSTI1, L. major stress-inducible protein-1; LeIF, L. braziliensis elongation and initiation factor; MIDGE, minimalistic immunogenically defined gene expression.

Main mechanisms of action and status of Leishmania vaccines at the clinical trial stage [51,69,82,83,86,87]

Name of vaccine Essential component/antigen Adjuvant Mechanism of action Clinical phase
Leishvaccine Whole-killed promastigotes of L. amazonensis BCG CD4+, CD8+, B cell activation III
ALMϼ Autoclave-killed L. major BCG T cell activation II
Leishmune FML Saponin T cell activation III
CaniLeish LiESP Saponin Induction of Th1 cell III
GALMα Gentamicin-attenuated L. major T and B cell activation II
LEISH-F1 TSA+LmSTI1+LeIF MPL-SE T cell activation I
LEISH-F2 LEISH-F2, designed from LEISH-F1 MPL-SE T cell activation II
LEISH-F3 NH+SMT GLA-SE T cell activation I
Leish-Tec L. donovani A2 protein Saponin T cell activation III
SMTγ+ NHμ NH+SMT GLA-SE T cell activation I
ChAd63-KH KMP-11+HASPB Broad CD8+ T cell activation II

ALM, Autoclaved-killed L. major; GALM, Gentamycin-attenuated L. major; NH, Nucleoside hydrolase; SMT, Sterol 24-c-methyltransferase; FML, fucose-mannose ligand; LiESP, L. infantum excreted–secreted protein; KMH-11, Kinetoplastid membrane protein 11; HASB, Hydrophilic acylated surface protein B; BCG, Bacillus Calmette Guerin; MPL-SE, Monophosphoryl lipid A; GLA-SE, Glucopyranosyl lipid A-stable oil-in-water nano emulsion.

Table 1 Several example for given properties of different types of Leishmania vaccines [21,51,84–86]

CL, Cutaneous leishmaniasis; VL, visceral leishmaniasis; MCL, Cutaneous leishmaniasis; PKDL, post-kala-azar dermal leishmaniasis; BCG, Bacillus Calmette Guerin; BT1, Biopterin transporter 1; Ldp27, L. donovani amastigote specific protein p27; Cen, centrin; HSP, Heat-schok protein; A2, Amastigote specific protein 2; LACK, Leishmania homolog of receptors for activated c-kinase; CPA or B, Cysteine peptidase A or B; NH, Nucleoside hydrolase; SMT, Sterol 24-c-methyltransferase; H1, Histone-1; LJM19, A L. longipalpis salivary protein; LJL143, A L. longipalpis salivary protein; PdSP15, P. duboscqi salivary protein-15; KMH-11, Kinetoplastid membrane protein 11; TSA, Thiol-specific antioxidant; gp63, Gikoprotein63; LmSTI1, L. major stress-inducible protein-1; LeIF, L. braziliensis elongation and initiation factor; MIDGE, minimalistic immunogenically defined gene expression.

Table 2 Main mechanisms of action and status of Leishmania vaccines at the clinical trial stage [51,69,82,83,86,87]

ALM, Autoclaved-killed L. major; GALM, Gentamycin-attenuated L. major; NH, Nucleoside hydrolase; SMT, Sterol 24-c-methyltransferase; FML, fucose-mannose ligand; LiESP, L. infantum excreted–secreted protein; KMH-11, Kinetoplastid membrane protein 11; HASB, Hydrophilic acylated surface protein B; BCG, Bacillus Calmette Guerin; MPL-SE, Monophosphoryl lipid A; GLA-SE, Glucopyranosyl lipid A-stable oil-in-water nano emulsion.