During experimental Eimeria infections in chickens, facilities are often contaminated by fecal oocysts known to be highly resistant to both chemical and enzymatic treatments. Thus, studies using experimental Eimeria infections have been limited due to the difficulty of complete elimination of residual oocysts from both cages and facilities. To overcome this limitation, simple, inexpensive, and disposable cages were constructed from cardboard boxes and tested during experimental Eimeria maxima infections. The cages were used in animal rooms with only a 1.7% evidence of coccidia contamination between adjacent cages. No significant differences in fecal oocyst output and body weight gain were noted between animals housed in disposable cages and animals housed in wire control cages. This cage design is a useful means for preventing oocyst contamination during experimental conditions, suggesting that this disposable cage design could be used for other avian infectious disease studies.
Citations
Citations to this article as recorded by
Different strategies for producing naturally soluble form of common cytokine receptor γ chain Jipseol Jeong, Woo H. Kim, Cherry P. Fernandez, Suk Kim, Yong-Hwan Kim, Hyung-Kwan Jang, Hyun S. Lillehoj, Hee-Jong Woo, Wongi Min Developmental & Comparative Immunology.2015; 48(1): 13. CrossRef
Chicken IL-17F: Identification and comparative expression analysis in Eimeria-infected chickens Woo H. Kim, Jipseol Jeong, Ae R. Park, Dongjean Yim, Yong-Hwan Kim, Kwang D. Kim, Hong H. Chang, Hyun S. Lillehoj, Byung-Hyung Lee, Wongi Min Developmental & Comparative Immunology.2012; 38(3): 401. CrossRef
Identification and Comparative Expression Analysis of Interleukin 2/15 Receptor β Chain in Chickens Infected with E. tenella Jipseol Jeong, Woo H. Kim, Jeongmi Yoo, Changhwan Lee, Suk Kim, Jae-Hyeon Cho, Hyung-Kwan Jang, Dong W. Kim, Hyun S. Lillehoj, Wongi Min, Ivan Cruz Moura PLoS ONE.2012; 7(5): e37704. CrossRef