Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Page Path

3
results for

"western China"

Article category

Keywords

Publication year

Authors

Funded articles

"western China"

Brief Communications
Genetic Diversity of Hard Ticks (Acari: Ixodidae) in the South and East Regions of Kazakhstan and Northwestern China
Yicheng Yang, Jin Tong, Hongyin Ruan, Meihua Yang, Chunli Sang, Gang Liu, Wurelihazi Hazihan, Bin Xu, S?ndor Hornok, Kadyken Rizabek, Kulmanova Gulzhan, Zhiqiang Liu, Yuanzhi Wang
Korean J Parasitol 2021;59(1):103-108.
Published online February 19, 2021
DOI: https://doi.org/10.3347/kjp.2021.59.1.103
To date, there is no report on the genetic diversity of ticks in these regions. A total of 370 representative ticks from the south and east regions of Kazakhstan (SERK) and Xinjiang Uygur Autonomous Region (XUAR) were selected for molecular comparison. A fragment of the mitochondrial cytochrome c oxidase subunit I (cox1) gene, ranging from 631 bp to 889 bp, was used to analyze genetic diversity among these ticks. Phylogenetic analyses indicated 7 tick species including Hyalomma asiaticum, Hyalomma detritum, Hyalomma anatolicum, Dermacentor marginatus, Rhipicephalus sanguineus, Rhipicephalus turanicus and Haemaphysalis erinacei from the SERK clustered together with conspecific ticks from the XUAR. The network diagram of haplotypes showed that i) Hy. asiaticum from Almaty and Kyzylorda Oblasts together with that from Yuli County of XUAR constituted haplogroup H-2, and the lineage from Chimkent City of South Kazakhstan was newly evolved; and ii) the R. turanicus ticks sampled in Israel, Almaty, South Kazakhstan, Usu City, Ulugqat and Baicheng Counties of XUAR were derivated from an old lineage in Alataw City of XUAR. These findings indicate that: i) Hy. asiaticum, R. turanicus and Ha. erinacei shared genetic similarities between the SERK and XUAR; and ii) Hy. marginatum and D. reticulatus show differences in their evolution.

Citations

Citations to this article as recorded by  Crossref logo
  • Population genetic structure and demographic history of Dermacentor marginatus Sulzer, 1776 in Anatolia
    Ömer Orkun, Eneshan Sarıkaya, Anıl Yılmaz, Mesut Yiğit, Zati Vatansever
    Scientific Reports.2025;[Epub]     CrossRef
  • The genetic diversity of tick species in selected areas of Qinghai Province
    Xuelian Chen, Zhi Li, Xueyong Zhang, Hong Duo, Xiuying Shen, Yijun Ma, Yong Fu, Zhihong Guo
    Parasitology Research.2025;[Epub]     CrossRef
  • Morphological, distributional, and molecular study of the Phlebotomus sand flies of Jordan
    Rami M. Mukbel, Dania A. Kanaan, Marwan M. Abu Halaweh, Zuhair S. Amr
    Journal of Vector Ecology.2024;[Epub]     CrossRef
  • East-to-west dispersal of bird-associated ixodid ticks in the northern Palaearctic: Review of already reported tick species according to longitudinal migratory avian hosts and first evidence on the genetic connectedness of Ixodes apronophorus between Sibe
    Andor Pitó, Denis Fedorov, Vojtěch Brlík, Jenő Kontschán, Gergő Keve, Attila D. Sándor, Nóra Takács, Sándor Hornok
    Current Research in Parasitology & Vector-Borne Diseases.2024; 6: 100201.     CrossRef
  • Theileria and Babesia infection in cattle – First molecular survey in Kazakhstan
    Marat Kuibagarov, Riza Makhamed, Assylbek Zhylkibayev, Maxat Berdikulov, Sarsenbay Abdrakhmanov, Mazhit Kozhabayev, Ilyas Akhmetollayev, Kasim Mukanov, Anara Ryskeldina, Yerlan Ramankulov, Alexandr Shustov, Christian Bauer, Alexandr Shevtsov
    Ticks and Tick-borne Diseases.2023; 14(1): 102078.     CrossRef
  • Spotted fever group rickettsiae in hard ticks in eastern and southern Kazakhstan
    Qiaoyan Dong, Meihua Yang, Fengshi Li, Yuqing Jia, Kadyken Rizabek, Kenesbay Kairullayev, Otarbayev Bauyrzhan, Ketan Adil, Kazkhan Oralhazi, Yuanzhi Wang
    Ticks and Tick-borne Diseases.2023; 14(6): 102238.     CrossRef
  • First detection of Rickettsia aeschlimannii in Hyalomma marginatum in Tibet, China
    Jun Jiao, Yonghui Yu, Peisheng He, Weiqiang Wan, Xuan OuYang, Bohai Wen, Yi Sun, Xiaolu Xiong
    Zoonoses.2022;[Epub]     CrossRef
  • 4,972 View
  • 101 Download
  • 7 Web of Science
  • Crossref
Sequence Analysis of cytb Gene in Echinococcus granulosus from Western China
Xiuqin Zhong, Ning Wang, Dandan Hu, Jiahai Wang, Tianyu Liu, Xiaobin Gu, Shuxian Wang, Xuerong Peng, Guangyou Yang
Korean J Parasitol 2014;52(2):205-209.
Published online April 18, 2014
DOI: https://doi.org/10.3347/kjp.2014.52.2.205

Echinococcus granulosus is the causative agent of cystic echinococcosis with medical and veterinary importance in China. Our main
objective
was to discuss the genotypes and genetic diversity of E. granulosus present in domestic animals and humans in western China. A total of 45 hydatid cyst samples were collected from sheep, humans, and a yak and subjected to an analysis of the sequences of mitochondrial cytochrome b (cytb) gene. The amplified PCR product for all samples was a 1,068 bp band. The phylogenetic analysis showed that all 45 samples were identified as E. granulosus (genotype G1). Ten haplotypes were detected among the samples, with the main haplotype being H1. The haplotype diversity was 0.626, while the nucleotide diversity was 0.001. These results suggested that genetic diversity was low among our samples collected from the west of China based on cytb gene analysis. These findings may provide more information on molecular characteristics of E. granulosus from this Chinese region.

Citations

Citations to this article as recorded by  Crossref logo
  • Sequence analysis of the cytb gene of Mesocestoides Vaillant, 1863 tetrathyridia from small mammals of the Russian Far East
    N.A. Pospekhova, V.V. Pereverzeva, N.E. Dokuchaev, A.A. Primak
    Proceedings of the Zoological Institute RAS.2025; 329(1): 64.     CrossRef
  • G1 the common Echinococcus granulosus genotype infected domestic cat (Felis catus) in Iraq
    Musafer H. Al-Ardi
    Journal of Veterinary Science.2024;[Epub]     CrossRef
  • Phylogeny and population structure of Echinococcus granulosus (sensu stricto) based on full-length cytb-nad2-atp6 mitochondrial genes – First report from Sialkot District of Pakistan
    Mughees Aizaz Alvi, Rana Muhammad Athar Ali, Li Li, Muhammad Saqib, Warda Qamar, Ali Hassan, Muzafar Ghafoor, Siddiq Ur Rahman, Muhammad Umar Zafar Khan, Bao-Quan Fu, Youyu Liu, Hong Yin, Hong-Bin Yan, Wan-Zhong Jia
    Molecular and Biochemical Parasitology.2023; 253: 111542.     CrossRef
  • Survey and Molecular Characterization of Echinococcus granulosus sensu stricto from Livestock and Humans in the Altai Region of Xinjiang, China
    Baoping Guo, Li Zhao, Lu Zhao, Rongsheng Mi, Xu Zhang, Bingjie Wang, Gang Guo, Yuan Ren, Wenjing Qi, Zhuangzhi Zhang
    Pathogens.2023; 12(1): 134.     CrossRef
  • Update on the genetic diversity and population structure of Echinococcus granulosus in Gansu Province, Tibet Autonomous Region, and Xinjiang Uygur Autonomous Region, Western China, inferred from mitochondrial cox1, nad1, and nad5 sequences
    Nigus Abebe Shumuye, Li Li, John Asekhaen Ohiolei, Sayed Ajmal Qurishi, Wen-Hui Li, Nian-Zhang Zhang, Yan-Tao Wu, Yao-Dong Wu, Sheng-Zhi Gao, Fu-Heng Zhang, Xue-Qi Tian, Wen-Jun Tian, Yong Fu, Xie-Zhong Wang, Yong-Hong Pan, Fang Zhan, Lin-Sheng Zhang, Min
    Parasitology Research.2023; 122(5): 1107.     CrossRef
  • GENETIC ANALYSIS OF SUMATRAN ELEPHANTS IN SEBLAT NATURAL ECOTOURISM PARK BASED ON PARTIAL OF MITOCHONDRIAL CYTOCHROME B GENE
    SIPRIYADI, YANSEN, ARDEA BUJANA, ENI SURYANTI, MUHAMMAD CAHYADI, RICHI YULIAVIAN KUSMINANTO, CHOIRUL MUSLIM, TETI NAIBAHO, MONICA ANGGRAINI
    Malaysian Applied Biology.2022; 51(3): 117.     CrossRef
  • Food-borne zoonotic echinococcosis: A review with special focus on epidemiology
    Mughees Aizaz Alvi, Abdullah F. Alsayeqh
    Frontiers in Veterinary Science.2022;[Epub]     CrossRef
  • Haplotype comparisons of Echinococcus granulosus sensu lato via mitochondrial gene sequences (co1, cytb, nadh1) among Pakistan and its neighbouring countries
    Aisha Khan, Haroon Ahmed, Sami Simsek, Khuram Shahzad, Figen Celik, Muhammad Sohail Afzal, Mobushir Riaz Khan, Hua Liu, Yujuan Shen, Jianping Cao
    Parasitology.2021; 148(9): 1019.     CrossRef
  • Genotypes of Echinococcus isolated from domestic livestock in Kazakhstan
    A.M. Abdybekova, Z. Zhang, A.A. Sultanov, A.A. Abdibayeva, A.A. Zhaksylykova, S.M. Junisbayeva, M.Zh. Aubakirov, G.D. Akhmetova, P.R. Torgerson
    Journal of Helminthology.2020;[Epub]     CrossRef
  • Molecular characterization of human echinococcosis in Sichuan, Western China
    Jingye Shang, Guangjia Zhang, Wenjie Yu, Wei He, Qian Wang, Bo Zhong, Qi Wang, Sha Liao, ruirui Li, Fan Chen, Yan Huang
    Acta Tropica.2019; 190: 45.     CrossRef
  • Genetic characterization ofEchinococcusisolates from various intermediate hosts in the Qinghai-Tibetan Plateau Area, China
    Xiumin Han, Yingna Jian, Xueyong Zhang, Liqing Ma, Wenjun Zhu, Qigang Cai, Shile Wu, Xiangqian Wang, Bingqiang Shi
    Parasitology.2019; 146(10): 1305.     CrossRef
  • Genetic variation of Echinococcus spp. in yaks and sheep in the Tibet Autonomous Region of China based on mitochondrial DNA
    John Asekhaen Ohiolei, Chen-Yang Xia, Li Li, Jian-Zhi Liu, Wen-Qiang Tang, Yan-Tao Wu, Danqulamu, Guo-Qiang Zhu, Bin Shi, Bao-Quan Fu, Hong Yin, Hong-Bin Yan, Wan-Zhong Jia
    Parasites & Vectors.2019;[Epub]     CrossRef
  • Mitochondrial genome data confirm that yaks can serve as the intermediate host of Echinococcus canadensis (G10) on the Tibetan Plateau
    Yantao Wu, Li Li, Guoqiang Zhu, Wenhui Li, Nianzhang Zhang, Shuangnan Li, Gang Yao, Wenjun Tian, Baoquan Fu, Hong Yin, Xingquan Zhu, Hongbin Yan, Wanzhong Jia
    Parasites & Vectors.2018;[Epub]     CrossRef
  • Genetic diversity of three Chinese native sheep breeds
    G. -X. E, Y. -Fu. Huang, Y. -Ju Zhao, J. -N. He
    Russian Journal of Genetics.2017; 53(1): 118.     CrossRef
  • Cytochrome b conservation between six camel breeds reared in Egypt
    Othman E. Othman, Heba A.M. Abd El-Kader, Sally S. Alam, Sekena H. Abd El-Aziem
    Journal of Genetic Engineering and Biotechnology.2017; 15(1): 1.     CrossRef
  • Microdiversity of Echinococcus granulosus sensu stricto in Australia
    C. A. ALVAREZ ROJAS, D. EBI, C. G. Gauci, J. P. SCHEERLINCK, M. WASSERMANN, D. J. JENKINS, M. W. LIGHTOWLERS, T. ROMIG
    Parasitology.2016; 143(8): 1026.     CrossRef
  • Surveillance of Echinococcus isolates from Qinghai, China
    Junying Ma, Hu Wang, Gonghua Lin, Fang Zhao, Chao Li, Tongzuo Zhang, Xiao Ma, Yongguo Zhang, Zhibin Hou, Huixia Cai, Peiyun Liu, Yongshun Wang
    Veterinary Parasitology.2015; 207(1-2): 44.     CrossRef
  • 10,787 View
  • 94 Download
  • 21 Web of Science
  • Crossref
Prevalence and Genetic Characterization of Toxoplasma gondii in House Sparrows (Passer domesticus) in Lanzhou, China
Wei Cong, Si-Yang Huang, Dong-Hui Zhou, Xiao-Xuan Zhang, Nian-Zhang Zhang, Quan Zhao, Xing-Quan Zhu
Korean J Parasitol 2013;51(3):363-367.
Published online June 30, 2013
DOI: https://doi.org/10.3347/kjp.2013.51.3.363

The prevalence of Toxoplasma gondii infection in birds has epidemiological significance because birds are indeed considered as a good indicator of environmental contamination by T. gondii oocysts. In this study, the prevalence of T. gondii in 313 house sparrows in Lanzhou, northwestern China was assayed by the modified agglutination test (MAT). Antibodies to T. gondii were positive in 39 (12.46%) of 313 samples (MAT titer ≥ 1:5). Tissues of heart, brain, and lung from the 39 seropositive house sparrows were tested for T. gondii DNA, 11 of which were found to be positive for the T. gondii B1 gene by PCR amplification. These positive DNA samples were typed at 9 genetic markers, including 8 nuclear loci, i.e., SAG1, 5'- and 3'-SAG2, alternative SAG2, SAG3, GRA6, L358, PK1, c22-8 and an apicoplast locus Apico. Of them, 4 isolates were genotyped with complete data for all loci, and 2 genotypes (Type II variants; ToxoDB #3 and a new genotype) were identified. These results showed that there is a potential risk for human infection with T. gondii in this region. To our knowledge, this is the first report of T. gondii seroprevalence in house sparrows in China.

Citations

Citations to this article as recorded by  Crossref logo
  • Global prevalence and risk factors associated with Toxoplasma gondii infection in wild birds: A systematic review and meta-analysis
    Chao Chen, Si-Yuan Qin, Xing Yang, Xiao-Man Li, Yanan Cai, Cong-Cong Lei, Quan Zhao, Hany M. Elsheikha, Hongwei Cao
    Preventive Veterinary Medicine.2024; 226: 106187.     CrossRef
  • Molecular detection of Toxoplasma gondii (Chromista: Apicomplexa) in the blood of passerines (Aves: Passeriformes) in south-eastern Armenia
    Sargis A. Aghayan, Manan Asikyan, Marko Raković, Daliborka Stanković, Igor V. Fadeev, Hasmik Gevorgyan, Oleg Shcherbakov, Marine Arakelyan, Karen Aghababyan, Abdol Sattar Pagheh, Mehdi Sharif, Ahmad Daryani
    Zoologia (Curitiba).2024;[Epub]     CrossRef
  • Two viable Toxoplasma gondii isolates from red-necked wallaby (Macropus rufogriseus) and red kangaroo (M. rufus)
    Liulu Yang, Shilin Xin, Niuping Zhu, Junbao Li, Chunlei Su, Yurong Yang
    Parasitology International.2023; 92: 102687.     CrossRef
  • Epidemiology and isolation of viable Toxoplasma gondii strain from macropods
    Liulu Yang, Hongjie Ren, Niuping Zhu, Gaohui Mao, Junbao Li, Chunlei Su, Yibao Jiang, Yurong Yang
    Heliyon.2023; 9(3): e13960.     CrossRef
  • Genetic diversity of Toxoplasma gondii isolates from birds in the world: A systematic review
    Tahereh Mikaeili Galeh, Shahabeddin Sarvi, Alireza Khalilian, Seyed Abdollah Hosseini, Ahmad Daryani
    Experimental Parasitology.2023; 248: 108480.     CrossRef
  • Metagenomic insights into the composition and function of the gut microbiota of mice infected with Toxoplasma gondii
    Jin-Xin Meng, Xin-Yu Wei, Huanping Guo, Yu Chen, Wei Wang, Hong-Li Geng, Xing Yang, Jiang Jiang, Xiao-Xuan Zhang
    Frontiers in Immunology.2023;[Epub]     CrossRef
  • Low Prevalence of Toxoplasma gondii in Sheep and Isolation of a Viable Strain from Edible Mutton from Central China
    Yibao Jiang, Shilin Xin, Yiheng Ma, Heng Zhang, Xu Yang, Yurong Yang
    Pathogens.2023; 12(6): 827.     CrossRef
  • Abundance of Non-Native Birds in the City: Spatial Variation and Relationship with Socioeconomics in a South American City
    Macarena Silva-Ortega, Catalina B. Muñoz-Pacheco, Nélida R. Villaseñor
    Animals.2023; 13(11): 1737.     CrossRef
  • Investigation of Toxoplasma gondii in wastewater and surface water in the Qinghai-Tibet Plateau, China using real-time PCR and multilocus genotyping
    Anna Lass, Ioannis Kontogeorgos, Liqing Ma, Xueyong Zhang, Xiuping Li, Panagiotis Karanis
    Scientific Reports.2022;[Epub]     CrossRef
  • Epidemiologic significance of Toxoplasma gondii infections in turkeys, ducks, ratites and other wild birds: 2009–2020
    J. P. Dubey, F. H. A. Murata, C. K. Cerqueira-Cézar, O. C. H. Kwok, C. Su
    Parasitology.2021; 148(1): 1.     CrossRef
  • Molecular Prevalence and Genetic Characterization of Toxoplasma gondii in Wild Birds in Hunan Province, China
    Meng-Ting Liu, Wei-Xing Jiang, Bin-Ze Gui, Yuan-Chun Jin, Jia-Ning Yi, Fen Li, Wen-Bin Zheng, Guo-Hua Liu
    Vector-Borne and Zoonotic Diseases.2019; 19(5): 378.     CrossRef
  • Seroprevalence and risk assessment of Toxoplasma gondii in Java sparrows (Lonchura oryzivora) in China
    Si-Yang Huang, Yi-Min Fan, Kai Chen, Qiu-Xia Yao, Bin Yang
    BMC Veterinary Research.2019;[Epub]     CrossRef
  • Prevalence, risk factors and genetic characterization of Toxoplasma gondii in sick pigs and stray cats in Jiangsu Province, eastern China
    Zhao-feng Hou, Shi-jie Su, Dan-dan Liu, Le-le Wang, Chuan-li Jia, Zhen-xing Zhao, Yi-fei Ma, Qiao-qiao Li, Jin-jun Xu, Jian-ping Tao
    Infection, Genetics and Evolution.2018; 60: 17.     CrossRef
  • First genetic characterization of Toxoplasma gondii infection in common quails (Coturnix coturnix) intended for human consumption in China
    Wei Cong, Hong-Liang Ju, Xiao-Xuan Zhang, Qing-Feng Meng, Jian-Gang Ma, Ai-Dong Qian, Xing-Quan Zhu
    Infection, Genetics and Evolution.2017; 49: 14.     CrossRef
  • Prevalence and genetic characterization of Toxoplasma gondii in badgers ( Melogale moschata ) in southern China by PCR-RFLP
    Kai Chen, Si-Yang Huang, Jin-Lei Wang, Rong-Liang Hu, Qiu-Xia Yao, Shou-Feng Zhang, Xing-Quan Zhu, Quan Liu
    Infection, Genetics and Evolution.2017; 52: 30.     CrossRef
  • Geographical distribution of Toxoplasma gondii genotypes in Asia: A link with neighboring continents
    P. Chaichan, A. Mercier, L. Galal, A. Mahittikorn, F. Ariey, S. Morand, F. Boumédiène, R. Udonsom, A. Hamidovic, J.B. Murat, Y. Sukthana, M.L. Dardé
    Infection, Genetics and Evolution.2017; 53: 227.     CrossRef
  • Sixty Years (1957–2017) of Research on Toxoplasmosis in China—An Overview
    Ming Pan, Congcong Lyu, Junlong Zhao, Bang Shen
    Frontiers in Microbiology.2017;[Epub]     CrossRef
  • Molecular detection of Toxoplasma gondii in house sparrow (Passer domesticus) by LAMP and PCR methods in Tehran, Iran
    Amir Abdoli, Abdolhossein Dalimi, Haleh Soltanghoraee, Fatemeh Ghaffarifar
    Journal of Parasitic Diseases.2016; 40(4): 1317.     CrossRef
  • Seroprevalence and genotypes of Toxoplasma gondii isolated from pigs intended for human consumption in Liaoning province, northeastern China
    Dawei Wang, Yan Liu, Tiantian Jiang, Guoxin Zhang, Gaoming Yuan, Jianbin He, Chunlei Su, Na Yang
    Parasites & Vectors.2016;[Epub]     CrossRef
  • Multi-scale occupancy approach to estimate Toxoplasma gondii prevalence and detection probability in tissues: an application and guide for field sampling
    Stacey A. Elmore, Kathryn P. Huyvaert, Larissa L. Bailey, Asma Iqbal, Chunlei Su, Brent R. Dixon, Ray T. Alisauskas, Alvin A. Gajadhar, Emily J. Jenkins
    International Journal for Parasitology.2016; 46(9): 563.     CrossRef
  • Molecular Detection and Genetic Characterization of Toxoplasma gondii in Farmed Minks (Neovison vison) in Northern China by PCR-RFLP
    Wen-Bin Zheng, Xiao-Xuan Zhang, Jian-Gang Ma, Fa-Cai Li, Quan Zhao, Si-Yang Huang, Xing-Quan Zhu, Gordon Langsley
    PLOS ONE.2016; 11(11): e0165308.     CrossRef
  • Toxoplasma gondii infection in cancer patients: Prevalence, risk factors, genotypes and association with clinical diagnosis
    Wei Cong, Guo-Hua Liu, Qing-Feng Meng, Wei Dong, Si-Yuan Qin, Fu-Kai Zhang, Xiang-Yan Zhang, Xiang-Yang Wang, Ai-Dong Qian, Xing-Quan Zhu
    Cancer Letters.2015; 359(2): 307.     CrossRef
  • Prevalence of <i>Toxoplasma gondii</i> in Dogs in Zhanjiang, Southern China
    Hai-Hai Jiang, Ming-Wei Li, Min-Jun Xu, Wei Cong, Xing-Quan Zhu
    The Korean Journal of Parasitology.2015; 53(4): 493.     CrossRef
  • Prevalence of Antibody toToxoplasma gondiiin Black-headed Gulls (Chroicocephalus ridibundus), Dianchi Lake, China
    Qiang Miao, Jiang-qiang Han, Xun Xiang, Fei-Zhou Yuan, Yong-zhang Liu, Gang Duan, Xing-quan Zhu, Feng-cai Zou
    Journal of Wildlife Diseases.2014; 50(3): 717.     CrossRef
  • Seroprevalence and genetic characterization of Toxoplasma gondii in three species of pet birds in China
    Wei Cong, Qing-Feng Meng, Hui-Qun Song, Dong-Hui Zhou, Si-Yang Huang, Ai-Dong Qian, Chunlei Su, Xing-Quan Zhu
    Parasites & Vectors.2014;[Epub]     CrossRef
  • First Report of Genotyping ofToxoplasma gondiiin Free-LivingMicrotus fortisin Northeastern China
    Xiao-Xuan Zhang, Si-Yang Huang, Ying-Guang Zhang, Yuan Zhang, Xing-Quan Zhu, Quan Liu
    Journal of Parasitology.2014; 100(5): 692.     CrossRef
  • Genetic characterization of Toxoplasma gondii from cats in Yunnan Province, Southwestern China
    Yi-Ming Tian, Si-Yang Huang, Qiang Miao, Hai-Hai Jiang, Jian-Fa Yang, Chunlei Su, Xing-Quan Zhu, Feng-Cai Zou
    Parasites & Vectors.2014;[Epub]     CrossRef
  • Genetic characterization of Toxoplasma gondii from pigs from different localities in China by PCR-RFLP
    Hai-Hai Jiang, Si-Yang Huang, Dong-Hui Zhou, Xiao-Xuan Zhang, Chunlei Su, Shun-Zhou Deng, Xing-Quan Zhu
    Parasites & Vectors.2013;[Epub]     CrossRef
  • 11,274 View
  • 93 Download
  • Crossref