Warning: fopen(/home/virtual/parasitol/journal/upload/ip_log/ip_log_2025-12.txt): failed to open stream: Permission denied in /home/virtual/lib/view_data.php on line 83

Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84
Use of In Vivo and In Vitro Systems to Select Leishmania amazonensis Expressing Green Fluorescent Protein
Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Articles

Original Article

Use of In Vivo and In Vitro Systems to Select Leishmania amazonensis Expressing Green Fluorescent Protein

The Korean Journal of Parasitology 2011;49(4):357-364.
Published online: December 16, 2011

1Department of Animal Biology, Biology Institute, Universidade Estadual de Campinas Caixa Postal 6109, Cep 13.083-970, Campinas, São Paulo, Brazil.

2Department of Genetics, Evolution and Bioagents, Biology Institute, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.

3Blood Center, Faculty of Medicine, School of Medicine, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil.

4Carlos Chagas Filho Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Corresponding author (sgiorgio@unicamp.br)
• Received: July 4, 2011   • Revised: August 9, 2011   • Accepted: August 24, 2011

© 2011, Korean Society for Parasitology

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 9,099 Views
  • 84 Download
  • 12 Crossref
  • 12 Scopus
prev next

Citations

Citations to this article as recorded by  Crossref logo
  • Nanocrystallization Effectively Improves the Oral Efficacy of an Antileishmanial Chalcone
    Maria Paula Gonçalves Borsodi, Wallace Pacienza-Lima, Jaqueline Correia Villaça Menezes, Douglas Escrivani-Oliveira, Natalia Arruda-Costa, Alcides José Monteiro da Silva, Lucio Mendes Cabral, Patrick G. Steel, Ariane de Jesus Sousa-Batista, Bartira Rossi-
    Pharmaceutics.2025; 17(4): 399.     CrossRef
  • Reporter gene systems: A powerful tool for Leishmania studies
    Romário Lopes Boy, Ahyun Hong, Juliana Ide Aoki, Lucile Maria Floeter-Winter, Maria Fernanda Laranjeira-Silva
    Current Research in Microbial Sciences.2022; 3: 100165.     CrossRef
  • In Vivo Safety and Efficacy of Chalcone-Loaded Microparticles with Modified Polymeric Matrix against Cutaneous Leishmaniasis
    Ariane de J. Sousa-Batista, Natalia Arruda-Costa, Wallace Pacienza-Lima, Felipe Carvalho-Gondim, Rosiane F. Santos, Silvia A. G. Da-Silva, Maria Inês Ré, Bartira Rossi-Bergmann
    Pharmaceutics.2022; 15(1): 51.     CrossRef
  • Antileishmanial Chemotherapy through Clemastine Fumarate Mediated Inhibition of the Leishmania Inositol Phosphorylceramide Synthase
    John G. M. Mina, Rebecca L. Charlton, Edubiel Alpizar-Sosa, Douglas O. Escrivani, Christopher Brown, Amjed Alqaisi, Maria Paula G. Borsodi, Claudia P. Figueiredo, Emanuelle V. de Lima, Emily A. Dickie, Wenbin Wei, Robson Coutinho-Silva, Andy Merritt, Terr
    ACS Infectious Diseases.2021; 7(1): 47.     CrossRef
  • Ex Vivo Phenotypic Screening of Two Small Repurposing Drug Collections Identifies Nifuratel as a Potential New Treatment against Visceral and Cutaneous Leishmaniasis
    Bárbara Domínguez-Asenjo, Camino Gutiérrez-Corbo, María Álvarez-Bardón, Yolanda Pérez-Pertejo, Rafael Balaña-Fouce, Rosa M. Reguera
    ACS Infectious Diseases.2021; 7(8): 2390.     CrossRef
  • Encapsulation in lipid-core nanocapsules improves topical treatment with the potent antileishmanial compound CH8
    Douglas O Escrivani, Milene Valéria Lopes, Fernanda Poletto, Stela Regina Ferrarini, Ariane J. Sousa-Batista, Patrick G. Steel, Sílvia Stanisçuaski Guterres, Adriana Raffin Pohlmann, Bartira Rossi-Bergmann
    Nanomedicine: Nanotechnology, Biology and Medicine.2020; 24: 102121.     CrossRef
  • Single-dose treatment for cutaneous leishmaniasis with an easily synthesized chalcone entrapped in polymeric microparticles
    Ariane J. Sousa-Batista, Natalia Arruda-Costa, Douglas O. Escrivani, Franceline Reynaud, Patrick G. Steel, Bartira Rossi-Bergmann
    Parasitology.2020; 147(9): 1032.     CrossRef
  • Broad Spectrum and Safety of Oral Treatment with a Promising Nitrosylated Chalcone in Murine Leishmaniasis
    Ariane J. Sousa-Batista, Douglas Escrivani-Oliveira, Camila Alves Bandeira Falcão, Cintia Iana Monteiro da Silva Philipon, Bartira Rossi-Bergmann
    Antimicrobial Agents and Chemotherapy.2018;[Epub]     CrossRef
  • EGFP reporter protein: its immunogenicity in Leishmania-infected BALB/c mice
    Samira Seif, Fereshteh Kazemi, Elham Gholami, Negar Seyed, Yasaman Taslimi, Sima Habibzadeh, Bahareh Azarian, Shahram Jamshidi, Mehrdad Hashemi, Sima Rafati, Tahereh Taheri
    Applied Microbiology and Biotechnology.2016; 100(9): 3923.     CrossRef
  • Development of Leishmania donovani stably expressing DsRed for flow cytometry-based drug screening using chalcone thiazolyl-hydrazone as a new antileishmanial target
    Anil Kumar Jaiswal, K. Bhaskara Rao, Pragati Kushwaha, Keerti Rawat, Ram K. Modukuri, Prashant Khare, Sumit Joshi, Shikha Mishra, Ambak Rai, Koneni V. Sashidhara, Anuradha Dube
    International Journal of Antimicrobial Agents.2016; 48(6): 695.     CrossRef
  • Evaluation of the leishmanicidal and cytotoxic effects of inhibitors for microorganism metabolic pathway enzymes
    Ademar de Mesquita Barbosa, Solange dos Santos Costa, Josmar Rodrigues da Rocha, Carlos Alberto Montanari, Selma Giorgio
    Biomedicine & Pharmacotherapy.2015; 74: 95.     CrossRef
  • An alternative in vitro drug screening test using Leishmania amazonensis transfected with red fluorescent protein
    Marcele N. Rocha, Célia M. Corrêa, Maria N. Melo, Stephen M. Beverley, Olindo Assis Martins-Filho, Ana Paula Madureira, Rodrigo P. Soares
    Diagnostic Microbiology and Infectious Disease.2013; 75(3): 282.     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Use of In Vivo and In Vitro Systems to Select Leishmania amazonensis Expressing Green Fluorescent Protein
Korean J Parasitol. 2011;49(4):357-364.   Published online December 16, 2011
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Use of In Vivo and In Vitro Systems to Select Leishmania amazonensis Expressing Green Fluorescent Protein
Korean J Parasitol. 2011;49(4):357-364.   Published online December 16, 2011
Close

Figure

  • 0
  • 1
  • 2
  • 3
Use of In Vivo and In Vitro Systems to Select Leishmania amazonensis Expressing Green Fluorescent Protein
Image Image Image Image
Fig. 1 GFP-L. amazonensis promastigote fluorescence analysis. (A) The fluorescence signal plotted against promastigote counts. Data at 7 days (♦); 14 days (▪); 32 days (▴); 41 days (X) and 56 days of parasite culture (•). (B) The fluorescence signal plotted against the number of promastigotes treated with 100 µg/ml (♦), 150 µg/ml (▪) and 1 mg/ml (▴) of G418 or untreated (X). Fluorescence is reported in arbitrary fluorescence units. (C) Flow cytometry analyses of GFP-promastigotes 5 days (C1), 60 days (C2), 90 days (C3), 120 days (C4), 210 days (C5) after G418 selection and wild L. amazonensis promastigotes (C6). (D) Microscopic images of GFP-promastigotes. Phase contrast images of G418 selected GFP-promastigotes (D1) and non-selected GFP-promastigotes (D3). Fluorescence images of G418 selected GFP-promastigotes (D2) and non-selected GFP-promastigotes (D4). Magnification 400×.
Fig. 2 GFP-L. amazonensis amastigote fluorescence analysis. (A) The number of GFP-amastigotes in vitro treated with 200 µg/ml (♦), 500 µg/ml (▴) and 1 mg/ml (▪) of G418. (B). The fluorescence signal plotted against the number of amastigotes cultured in vitro treated with 200 µg/ml (♦), 500 µg/ml (▪) and 1 mg/ml (▴) of G418. Fluorescence is reported in arbitrary fluorescence units. (C) Flow cytometry analyses of wild L. amazonensis amastigotes (C1), non-selected GFP-amastigotes (C2) and G418 selected GFP-amastigotes (C3). (D) Microscopic images of GFP-amastigotes. Phase contrast images of non-selected GFP-amastigotes (D2); 200 µg/ml G418 selected GFP-amastigotes (D4); 500 µg/ml G418 selected GFP-amastigotes (D6); 1 mg/ml G418 selected GFP-amastigotes (D8); Fluorescence images of non-selected GFP-amastigotes (D1); 200 µg/ml G418 selected GFP-amastigotes (D3); 500 µg/ml G418 selected GFP-amastigotes (D5); 1 mg/ml G418 selected GFP-amastigotes (D7). Magnification 400×.
Fig. 3 Flow cytometry analyses of GFP-amastigotes after in vivo G418 selection. Flow cytometry of murine lesion derived GFP-amastigotes after: 15 days infection and 7 doses of saline treatment (A); 15 days infection and 7 doses of G418 treatment (B); 30 days infection and 5 doses of saline treatment (C); 30 days infection and 5 doses of G418 treatment (D); 30 days infection and 9 doses of saline treatment (E); 30 days infection and 9 doses of G418 treatment (F); 90 days infection and 3 doses of saline treatment (G); 90 days infection and 3 doses of G418 treatment (H); 90 days infection and 6 doses of saline treatment (I); 90 days infection and 6 doses of G418 treatment (J). G418 and saline were administered as described in Materials and Methods.
Fig. 4 Infection of murine macrophages with GFP-L. amazonensis. (A) Number of amastigotes per macrophage and % of infected macrophages after infection with GFP-promastigotes. (B) The fluorescence signal of noninfected macrophages (control) and infected macrophages. Fluorescence is reported in arbitrary fluorescence units. (C) Microscopic images of infected macrophages. Fluorescence image (C1); Phase contrast image (C2) and Giemsa stained image (C3). Magnification 400×. (D) Flow cytometry of noninfected macrophages (D1) and infected macrophages (D2).
Use of In Vivo and In Vitro Systems to Select Leishmania amazonensis Expressing Green Fluorescent Protein