Warning: fopen(/home/virtual/parasitol/journal/upload/ip_log/ip_log_2025-12.txt): failed to open stream: Permission denied in /home/virtual/lib/view_data.php on line 83

Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84
Prevalence, Associated Risk Factors, and Phylogenetic Analysis of Toxocara vitulorum Infection in Yaks on the Qinghai Tibetan Plateau, China
Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Articles

Original Article

Prevalence, Associated Risk Factors, and Phylogenetic Analysis of Toxocara vitulorum Infection in Yaks on the Qinghai Tibetan Plateau, China

The Korean Journal of Parasitology 2016;54(5):645-652.
Published online: October 31, 2016

1College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China

2Laboratory of Detection and Monitoring of Highland Animal Disease, Tibet Agriculture and Animal Husbandry College, Linzhi 860000 Tibet, People’s Republic of China

3University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Pakistan

*Corresponding author (lijk210@sina.com; 87363364@qq.com)
• Received: August 1, 2016   • Revised: September 11, 2016   • Accepted: September 12, 2016

Copyright © 2016 by The Korean Society for Parasitology and Tropical Medicine

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 10,156 Views
  • 157 Download
  • 31 Web of Science
  • 22 Crossref
  • 32 Scopus
prev next

Citations

Citations to this article as recorded by  Crossref logo
  • Molecular characterization and genetic variability of Toxocara vitulorum from naturally infected buffalo calves for the first time in Bangladesh
    Hiranmoy Biswas, Nurnabi Ahmed, Babul Chandra Roy, Mohammad Manjurul Hasan, MD Khalilur Rahman, Md. Hasanuzzaman Talukder
    Parasitology.2024; 151(8): 795.     CrossRef
  • RESEARCH PROGRESS ON MAJOR DISEASES OF PIGS AND YAKS ON THE QINGHAI-TIBET PLATEAU: A COMPREHENSIVE REVIEW FROM 1990 TO 2023
    P Tian, Y Wang, H Zhang, H Yang, M.U. Rehman, F Kebzai, Y Li
    The Journal of Animal and Plant Sciences.2024; 34(4): 832.     CrossRef
  • Application of Silver Nanoparticles in Parasite Treatment
    Ping Zhang, Jiahao Gong, Yan Jiang, Yunfeng Long, Weiqiang Lei, Xiuge Gao, Dawei Guo
    Pharmaceutics.2023; 15(7): 1783.     CrossRef
  • Molecular detection and phylogenetic analysis of Toxocara vitulorum in feces and milk samples from naturally infected water buffaloes
    Osman Furkan Urhan, Ufuk Erol, Kursat Altay
    Research in Veterinary Science.2023; 162: 104952.     CrossRef
  • In vitro anti-Toxocara vitulorum effect of silver nanoparticles
    Manar Ahmed Bahaaeldine, Manal El Garhy, Sohair R. Fahmy, Ayman Saber Mohamed
    Journal of Parasitic Diseases.2022; 46(2): 409.     CrossRef
  • Antiprotozoal and Anthelmintic Activity of Zinc Oxide Nanoparticles
    José Rodrigues do Carmo Neto, Rhanoica Oliveira Guerra, Juliana Reis Machado, Anielle Christine Almeida Silva, Marcos Vinicius da Silva
    Current Medicinal Chemistry.2022; 29(12): 2127.     CrossRef
  • The Complete Mitogenome of Toxocara vitulorum: Novel In-Sights into the Phylogenetics in Toxocaridae
    Yue Xie, Lidan Wang, Yijun Chen, Zhao Wang, Pengchen Zhu, Zun Hu, Xinfeng Han, Zhisheng Wang, Xuan Zhou, Zhicai Zuo
    Animals.2022; 12(24): 3546.     CrossRef
  • Epidemiological Studies on Nematode Parasites of Domestic Geese (Anser anser f. domesticus) and First Molecular Identification and Phylogenetic Analysis of Heterakis dispar (Schrank, 1790) in Egypt
    Ismail Elshahawy, Mahmoud El-Siefy, Samia Fawy, Eman Mohammed
    Acta Parasitologica.2021; 66(4): 1297.     CrossRef
  • Prevalence and risk factors of Toxocara vitulorum infection in buffalo calves in coastal, northeastern and northwestern regions of Bangladesh
    Hiranmoy Biswas, Babul Chandra Roy, Pallab Kumar Dutta, Mohammad Manjurul Hasan, Shanaz Parvin, Dipok Kumar Choudhury, Nurjahan Begum, Md. Hasanuzzaman Talukder
    Veterinary Parasitology: Regional Studies and Reports.2021; 26: 100656.     CrossRef
  • Immunodiagnosis of anti-Toxocara vitulorum IgG antibodies by using commercially available bovine ELISA Kit in bovine of Potohar region Pakistan
    Samina Asghar Abbasi, Mazhar Qayum, Ruqayya Mehmood Baig, Mehvish Naseer Ahmad, Akbar Shah, Mujeeb ur Rahman, Haroon
    Acta Ecologica Sinica.2020; 40(1): 97.     CrossRef
  • Impacts of different altitudes and natural drying times on lipolysis, lipid oxidation and flavour profile of traditional Tibetan yak jerky
    Ge Han, Lang Zhang, Qixuan Li, Yan Wang, Qian Chen, Baohua Kong
    Meat Science.2020; 162: 108030.     CrossRef
  • Molecular characterization of ascaridoid parasites from captive wild carnivores in China using ribosomal and mitochondrial sequences
    Yue Xie, Yingxin Li, Xiaobin Gu, Yunjian Liu, Xuan Zhou, Lu Wang, Ran He, Xuerong Peng, Guangyou Yang
    Parasites & Vectors.2020;[Epub]     CrossRef
  • Morphological and Molecular Characterization of Toxocara apodemi (Nematoda: Ascarididae) from Striped Field Mice, Apodemus agrarius, in Korea
    Hyeon Cheol Kim, Eui Ju Hong, Si Yun Ryu, Jinho Park, Jeong Gon Cho, Do Hyeon Yu, Joon Seok Chae, Kyoung Seong Choi, Bae Keun Park
    The Korean Journal of Parasitology.2020; 58(4): 403.     CrossRef
  • Toxocariasis y vacunación para Toxocara: una revisión sistemática
    Dumar A. Jaramillo-Hernández, Luis F. Salazar-Garcés, Mónica M. Baquero-Parra, Carina Da Silva-Pinheiro, Neuza M. Alcantara-Neves
    Orinoquia.2020; 24(2): 79.     CrossRef
  • Molecular characterization and phylogenetic analysis of Toxocara species in dogs, cattle and buffalo in Egypt
    O.A. Mahdy, W. M. Mousa, S. Z. Abdel-Maogood, S. M. Nader, S. Abdel-Radi
    Helminthologia.2020; 57(2): 83.     CrossRef
  • The impact of Bacillus subtilis 18 isolated from Tibetan yaks on growth performance and gut microbial community in mice
    Aoyun Li, Xiong Jiang, Yaping Wang, Lihong Zhang, Hui Zhang, Khalid Mehmood, Zhixing Li, Muhammad Waqas, Jiakui Li
    Microbial Pathogenesis.2019; 128: 153.     CrossRef
  • The serodiagnostic potential of recombinant proteins TES–30 and TES–120 in an indirect ELISA in the diagnosis of toxocariasis in cattle, horses, and sheep
    Lucas Moreira dos Santos, Rafael Amaral Donassolo, Maria Elisabeth Berne, Fábio Pereira Leivas Leite, Luciana Farias da Costa Avila, Carlos James Scaini, Ângela Nunes Moreira, Fabricio Rochedo Conceição, Henk D. F. H. Schallig
    PLOS ONE.2019; 14(3): e0213830.     CrossRef
  • Analysis of the internal transcribed spacer region of Ascaris suum and Ascaris lumbricoides derived from free range Tibetan pigs
    Kun Li, Houqiang Luo, Hui Zhang, Khalid Mehmood, Muhammad Shahzad, Lihong Zhang, Jiakui Li
    Mitochondrial DNA Part A.2018; 29(4): 624.     CrossRef
  • Characterization of fungus microbial diversity in healthy and diarrheal yaks in Gannan region of Tibet Autonomous Prefecture
    Kun Li, Khalid Mehmood, Hui Zhang, Xiong Jiang, Muhammad Shahzad, Xiaoqian Dong, Jiakui Li
    Acta Tropica.2018; 182: 14.     CrossRef
  • Mitochondrial genome data confirm that yaks can serve as the intermediate host of Echinococcus canadensis (G10) on the Tibetan Plateau
    Yantao Wu, Li Li, Guoqiang Zhu, Wenhui Li, Nianzhang Zhang, Shuangnan Li, Gang Yao, Wenjun Tian, Baoquan Fu, Hong Yin, Xingquan Zhu, Hongbin Yan, Wanzhong Jia
    Parasites & Vectors.2018;[Epub]     CrossRef
  • Socio-economic burden of parasitic infections in yaks from 1984 to 2017 on Qinghai Tibetan Plateau of China—A review
    Kun Li, Muhammad Shahzad, Hui Zhang, Xiong Jiang, Khalid Mehmood, Xiaodong Zhao, Jiakui Li
    Acta Tropica.2018; 183: 103.     CrossRef
  • Epidemiological investigation and risk factors of Echinococcus granulosus in yaks (Bos grunniens), Tibetan pigs and Tibetans on Qinghai Tibetan plateau
    Kun Li, Lihong Zhang, Hui Zhang, Zhixin Lei, Houqiang Luo, Khalid Mehmood, Muhammad Shahzad, Yanfang Lan, Meng Wang, Jiakui Li
    Acta Tropica.2017; 173: 147.     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Prevalence, Associated Risk Factors, and Phylogenetic Analysis of Toxocara vitulorum Infection in Yaks on the Qinghai Tibetan Plateau, China
Korean J Parasitol. 2016;54(5):645-652.   Published online October 31, 2016
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Prevalence, Associated Risk Factors, and Phylogenetic Analysis of Toxocara vitulorum Infection in Yaks on the Qinghai Tibetan Plateau, China
Korean J Parasitol. 2016;54(5):645-652.   Published online October 31, 2016
Close

Figure

  • 0
  • 1
  • 2
  • 3
Prevalence, Associated Risk Factors, and Phylogenetic Analysis of Toxocara vitulorum Infection in Yaks on the Qinghai Tibetan Plateau, China
Image Image Image Image
Fig. 1 PCR amplification of ND1 gene fragment from T. vitulorum. PCR positive samples for T. vitulorum (−370 bp). Lane M, FastRuler Low Range DNA Ladder (Beijing Dingguo Changsheng Biotech Co. Ltd). Fragment sizes are as follows: 2,000, 1,600, 1,000, 750, 500, 250, and 100 bp.
Fig. 2 Alignments of the 2 representative profiles of ND1 sequences with 8 ascarids available.
Fig. 3 The number of base substitutions per site between sequences are shown. Analyses were conducted using the maximum composite likelihood model. The analysis involved 10 nucleotide sequences. Codon positions included were 1st+2nd+3rd+noncoding. All positions containing gaps and missing data were eliminated. There were a total of 357 positions in the final dataset. Evolutionary analyses were conducted in MEGA6.
Fig. 4 Phylogenetic tree constructed with sequences of the presented parasite and other ascarids available conducted in MEGA6.
Prevalence, Associated Risk Factors, and Phylogenetic Analysis of Toxocara vitulorum Infection in Yaks on the Qinghai Tibetan Plateau, China

Prevalence of T. vitulorum infection in yak calves in different regions, genders, ages, and fecal consistency

Variable No. samples No. positive (%; 95% CI) Mean EPG (SD)
Regionsc
Qinghaia Nangqian 91 32 (35.2; 25.4–45.9) 4,219 (12,217)
Zhiduo 63 9 (14.3; 6.7–25.4) 3,566 (9,872)
Zaduo 165 23 (13.9; 9.0–20.2) 2,891 (7,826)
Total 319 64 (20.1; 15.8–24.9) 3,442 (9,128)

Tibetb Xigaze 127 31 (24.4; 17.2–32.8) 1,936 (5,612)
Lhasa 101 40 (39.6; 30.0–39.8) 4,325 (21,234)
Nyingchi 53 6 (11.3; 4.3–23.0) 987 (2,982)
Qamdo 154 29 (18.8; 13.0–25.9) 2,955 (4,357)
Total 435 75 (17.2; 13.8–21.1) 4,328 (9,827)

Sichuan Hongyuan 71 29 (40.9; 29.3–53.2) 5,433 (13,289)
Gansu Gannan 66 5 (7.6; 2.5–16.8) 1,277 (3,256)
Genders
Male 397 91 (22.9; 18.9–27.4) 4,592 (7,824)
Female 494 82 (16.6; 13.4–20.2) 2,971 (4,963)
Agesd (day)
≤ 28 255 54 (21.2; 16.3–26.7) 3,897 (6,899)
28–56 193 62 (32.1; 25.6–35.2) 5,219 (15,627)
>56 443 57 (12.9; 9.9–16.3) 1,533 (4,129)
Faecal consistencye
Normal 622 105 (16.9;14.0–20.1) 3,255 (7,921)
Soft 153 57 (37.3; 29.6–45.4) 5,685 (18,724)
Watery 116 11 (9.5; 4.8–16.3) 2,983 (7,332)

aThere was a significant difference among the different regions of the prevalence of T. vitulorum infection in yaks in Qinghai (P<0.01, χ2=18.110).

bThere was a significant difference among the different regions of the prevalence of T. vitulorum infection in yaks in Tibet (P<0.01, χ2=20.179).

cThere was a significant difference among the different regions of the prevalence of T. vitulorum infection in yaks on the Qinghai Tibetan plateau (P<0.01, χ2=28.151).

dThere was a significant difference among the different ages of the prevalence of T. vitulorum infection in yaks on the Qinghai Tibetan plateau (P<0.01, χ2=32.571).

eThere was a significant difference among the different fecal consistency of the prevalence of T. vitulorum infection in yaks on the Qinghai Tibetan plateau (P<0.01, χ2=40.988).

Odds ratios for geographical, ages, and fecal consistency of yaks as risk factors for T. vitulorum seroprevalence in yaks (n=891)

Factor Category Prevalence (%) OR 95% CI P-value
Region (Qinghai) Zaduo 13.9 reference
Zhiduo 14.3 1.029 0.448–2.364 0.946
Nangqian 35.2 3.349 1.809–6.199 <0.001

Region (Tibet) Nyingchi 11.3 reference
Qamdo 18.8 1.817 0.709–4.656 0.208
Xigaze 24.4 2.53 0.987–6.483 0.048

Lhasa 39.6 5.137 2.009–13.131 <0.001
Region Gansu 7.6 reference
Tibet 17.2 2.542 0.988–6.540 0.046
Qinghai 20.1 3.062 1.182–7.933 0.016
Sichuan 40.9 8.424 3.016–23.530 <0.001
>56 12.9 reference

Age ≤28 21.2 1.819 1.208–2.740 0.004
28–56 32.1 3.205 2.126–4.833 <0.001

Fecal consistency Watery 9.5 reference
Normal 16.9 1.939 1.006–3.734 0.044
Soft 37.3 5.668 2.808–11.439 <0.001
Table 1 Prevalence of T. vitulorum infection in yak calves in different regions, genders, ages, and fecal consistency

There was a significant difference among the different regions of the prevalence of T. vitulorum infection in yaks in Qinghai (P<0.01, χ2=18.110).

There was a significant difference among the different regions of the prevalence of T. vitulorum infection in yaks in Tibet (P<0.01, χ2=20.179).

There was a significant difference among the different regions of the prevalence of T. vitulorum infection in yaks on the Qinghai Tibetan plateau (P<0.01, χ2=28.151).

There was a significant difference among the different ages of the prevalence of T. vitulorum infection in yaks on the Qinghai Tibetan plateau (P<0.01, χ2=32.571).

There was a significant difference among the different fecal consistency of the prevalence of T. vitulorum infection in yaks on the Qinghai Tibetan plateau (P<0.01, χ2=40.988).

Table 2 Odds ratios for geographical, ages, and fecal consistency of yaks as risk factors for T. vitulorum seroprevalence in yaks (n=891)