Warning: fopen(/home/virtual/parasitol/journal/upload/ip_log/ip_log_2025-12.txt): failed to open stream: Permission denied in /home/virtual/lib/view_data.php on line 83

Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84
DNA Methylation of Gene Expression in Acanthamoeba castellanii Encystation
Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Articles

Original Article

DNA Methylation of Gene Expression in Acanthamoeba castellanii Encystation

The Korean Journal of Parasitology 2017;55(2):115-120.
Published online: April 30, 2017

1Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul 02447, Korea

2Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 41944, Korea

3Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 41944, Korea

4Department of Parasitology, Dong-A University College of Medicine, Busan 49201, Korea

*Corresponding author (hhkong@dau.ac.kr)
• Received: February 21, 2017   • Revised: March 13, 2017   • Accepted: April 3, 2017

Copyright © 2017 by The Korean Society for Parasitology and Tropical Medicine

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 7,975 Views
  • 171 Download
  • 11 Web of Science
  • 14 Crossref
  • 12 Scopus
prev next

Citations

Citations to this article as recorded by  Crossref logo
  • DNA methylation modification: Dawn of research on cornea-related diseases
    Quanhao Pan, Xiaoning Ge, Di Wang, Yuxi He
    Life Sciences.2025; 376: 123757.     CrossRef
  • Proteases of Acanthamoeba
    Behroz Mahdavi Poor, Jalil Rashedi, Vahid Asgharzadeh, Amirali Mirmazhary, Nazila Gheitarani
    Parasitology Research.2024;[Epub]     CrossRef
  • Acanthamoeba keratitis: new hopes for potential interventions for a curable but often refractory disease
    Bader Saleem Alawfi, Naveed Ahmed Khan, David Lloyd, Ruqaiyyah Siddiqui
    Expert Review of Ophthalmology.2024; 19(4): 271.     CrossRef
  • Biological characteristics and pathogenicity of Acanthamoeba
    Yuehua Wang, Linzhe Jiang, Yitong Zhao, Xiaohong Ju, Le Wang, Liang Jin, Ryan D. Fine, Mingguang Li
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Coevolution of the CDCA7-HELLS ICF-related nucleosome remodeling complex and DNA methyltransferases
    Hironori Funabiki, Isabel E Wassing, Qingyuan Jia, Ji-Dung Luo, Thomas Carroll
    eLife.2023;[Epub]     CrossRef
  • Coevolution of the CDCA7-HELLS ICF-related nucleosome remodeling complex and DNA methyltransferases
    Hironori Funabiki, Isabel E Wassing, Qingyuan Jia, Ji-Dung Luo, Thomas Carroll
    eLife.2023;[Epub]     CrossRef
  • Antiproliferation and Antiencystation Effect of Class II Histone Deacetylase Inhibitors on Acanthamoeba castellanii
    Ki-Back Chu, Hae-Ahm Lee, Marc Pflieger, Fabian Fischer, Yodita Asfaha, Leandro A. Alves Avelar, Alexander Skerhut, Matthias U. Kassack, Finn K Hansen, Andrea Schöler, Thomas Kurz, Min-Jeong Kim, Eun-Kyung Moon, Fu-Shi Quan
    ACS Infectious Diseases.2022; 8(2): 271.     CrossRef
  • Stimulation of Acanthamoeba castellanii excystment by enzyme treatment and consequences on trophozoite growth
    Zineb Fechtali-Moute, Philippe M. Loiseau, Sébastien Pomel
    Frontiers in Cell and Developmental Biology.2022;[Epub]     CrossRef
  • Aspergillus niger trehalase enzyme induced morphological and protein alterations on Acanthamoeba cyst and molecular docking studies
    H. Fatimah, R. Siti Aisyah, N. L. Ma, Nurhidayana M. Rased, Nor F. A. C. Mohamad, F. Nur Syakinah Nafisa, A. Azila, Hazlina A. Zakeri
    Journal of Parasitic Diseases.2021; 45(2): 459.     CrossRef
  • Epigenetics as Driver of Adaptation and Diversification in Microbial Eukaryotes
    Agnes K. M. Weiner, Laura A. Katz
    Frontiers in Genetics.2021;[Epub]     CrossRef
  • Infectious Keratitis: An Update on Role of Epigenetics
    Sudhir Verma, Aastha Singh, Akhil Varshney, R. Arun Chandru, Manisha Acharya, Jyoti Rajput, Virender Singh Sangwan, Amit K. Tiwari, Tuhin Bhowmick, Anil Tiwari
    Frontiers in Immunology.2021;[Epub]     CrossRef
  • aCLS cancers: Genomic and epigenetic changes transform the cell of origin of cancer into a tumorigenic pathogen of unicellular organization and lifestyle
    Vladimir F. Niculescu
    Gene.2020; 726: 144174.     CrossRef
  • New insights into the mechanical properties of Acanthamoeba castellanii cysts as revealed by phonon microscopy
    Fernando Pérez-Cota, Richard J. Smith, Hany M. Elsheikha, Matt Clark
    Biomedical Optics Express.2019; 10(5): 2399.     CrossRef
  • Cytopathic Change and Inflammatory Response of Human Corneal Epithelial Cells Induced by Acanthamoeba castellanii Trophozoites and Cysts
    Hae-Jin Sohn, Ga-Eun Seo, Jae-Ho Lee, A-Jeong Ham, Young-Hwan Oh, Heekyoung Kang, Ho-Joon Shin
    The Korean Journal of Parasitology.2019; 57(3): 217.     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

DNA Methylation of Gene Expression in Acanthamoeba castellanii Encystation
Korean J Parasitol. 2017;55(2):115-120.   Published online April 30, 2017
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
DNA Methylation of Gene Expression in Acanthamoeba castellanii Encystation
Korean J Parasitol. 2017;55(2):115-120.   Published online April 30, 2017
Close

Figure

  • 0
  • 1
  • 2
  • 3
DNA Methylation of Gene Expression in Acanthamoeba castellanii Encystation
Image Image Image Image
Fig. 1 Effect of 5-azacytidine on proliferation and encystation. Acanthamoeba trophozoites were cultured in PYG media without 5-azycytidine (A) or with 5-azacytidine (B) for 3 days. Trophozoites were transferred to encystment media and encystation was induced for 3 days without 5-azycytidine (C) or with 5-azacytidine (D). The 10 μM 5-azacytidine has limited effect on the growth of Acanthamoeba (E). However, encystation ratio was reduced in 5-azacytidine treated cells (52.2%) compared to that in control cells (80.5%) (F). Arrows indicate remained trophozoites after the induction of encystation (D). Values indicate means (±SD) from 3 experiments.
Fig. 2 Promoter region of CSCP. Nucleotide sequence of CSCP promoter region was amplified by PCR using GenomeWalker Kit. This DNA is 2,878 bp in length at the 5′-flaking region of CSCP for bisulfite sequencing PCR. CG dinucleotides in promoter region were underlined.
Fig. 3 Bioinformatic analysis of CSCP promoter region. Three CpG islands (island 1, 1,633 bp; island 2, 625 bp; island 3, 367 bp) of CSCP promoter region were detected by bioinformatics analysis (A). The promoter region was divided into 7 fragments (B). Primers for bisulfite sequencing PCR were designed based on Methprimer.
Fig. 4 Methylation status of CpG island 1 of CSCP promoter. Methylation of promoter CpG island 1 of CSCP in trophozoite was compared to that in cyst by bisulfite sequencing PCR. In trophozoite CpG island 1, 8.2% methylation was observed while 7.3% methylation was observed in cyst. CpG island 1 of trophozoite showed higher methylation than that of cyst. T, trophozoite; C, cyst; ●, methylated CpG site; and ○, unmethylated CpG site.
DNA Methylation of Gene Expression in Acanthamoeba castellanii Encystation

Primers used in this study

Primer name Sequence (5′ → 3′) Product size (bp)
CP-GSP 1 GAAGAAGAAGACGATGTTGATCCTCAT 2,904
CP-GSP 2 CGTGTTGTTCTTTTTGTAGTTTGTGAGT 2,877
Promoter-F1 F: TTGGTATTATAATATATAATATTATTA
R: AAATTACTCACTACACACTAACAACAA
322
Promoter-F2 F: TTGTTGTTAGTGTGTAGTGAGTAATTT
R: TTTCTCTCCACTTTTCTTTTTCTTAA
502
Promoter-F3 F: TTTAAGAAAAAGAAAAGTGGAGAGAA
R: TAAACCTTAATATTATAATAACTAAA
539
Promoter-F4 F: TTTAGTTATTATAATATTAAGGTTTA
R: TTATAAATATAACTCTTCAACTAACCT
320
Promoter-F5 F: AGGTTAGTTGAAGAGTTATATTTATAA
R: AACAAAAAAACCCACAAATACCAATAA
455
Promoter-F6 F: TTATTGGTATTTGTGGGTTTTTTTGTT
R: TAATAATTAACTTAAAACTAAATATAA
421
Promoter-F7 F: TTATATTTAGTTTTAAGTTAATTATTA
R: TATTATTCTTTTTATAATTTATAAATT
415
Table 1 Primers used in this study