Warning: fopen(/home/virtual/parasitol/journal/upload/ip_log/ip_log_2025-12.txt): failed to open stream: Permission denied in /home/virtual/lib/view_data.php on line 83

Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84
Influenza M1 Virus-Like Particles Consisting of Toxoplasma gondii Rhoptry Protein 4
Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Articles

Original Article

Influenza M1 Virus-Like Particles Consisting of Toxoplasma gondii Rhoptry Protein 4

The Korean Journal of Parasitology 2017;55(2):143-148.
Published online: April 30, 2017

1Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea

2Department of Emergency, Yanbian University Hospital, Yanji City, P. R. China

3Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul 02447, Korea

*Corresponding authors (fsquan@khu.ac.kr)
• Received: December 28, 2016   • Revised: March 2, 2017   • Accepted: March 11, 2017

Copyright © 2017 by The Korean Society for Parasitology and Tropical Medicine

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 8,939 Views
  • 161 Download
  • 7 Web of Science
  • 7 Crossref
  • 7 Scopus
prev next

Citations

Citations to this article as recorded by  Crossref logo
  • IgM Antibody Detection as a Diagnostic Marker for Acute Toxoplasmosis: Current Status of Studies and Main Limitations
    Karolina Sołowińska, Lucyna Holec-Gąsior
    Antibodies.2025; 14(2): 44.     CrossRef
  • Protective immunity induced by CpG ODN‐adjuvanted virus‐like particles containing Toxoplasma gondii proteins
    Hae‐Ji Kang, Ki‐Back Chu, Min‐Ju Kim, Su‐Hwa Lee, Hyunwoo Park, Hui Jin, Eun‐Kyung Moon, Fu‐Shi Quan
    Parasite Immunology.2021;[Epub]     CrossRef
  • Detection of Toxoplasma gondii Infections using Virus-Like Particles Displaying T. gondii ROP4 Antigen
    Min-Ju Kim, Jie Mao, Hae-Ji Kang, Ki-Back Chu, Fu-Shi Quan
    The Korean Journal of Parasitology.2021; 59(6): 565.     CrossRef
  • Virus-like particle vaccine displaying Toxoplasma gondii apical membrane antigen 1 induces protection against T. gondii ME49 infection in mice
    Min-Ju Kim, Su-Hwa Lee, Hae-Ji Kang, Ki-Back Chu, Hyunwoo Park, Hui Jin, Eun-Kyung Moon, Sung Soo Kim, Fu-Shi Quan
    Microbial Pathogenesis.2020; 142: 104090.     CrossRef
  • Toxoplasma gondii virus‐like particle vaccination alleviates inflammatory response in the brain upon T gondii infection
    Hae‐Ji Kang, Ki‐Back Chu, Su‐Hwa Lee, Min‐Ju Kim, Hyunwoo Park, Hui Jin, Eun‐Kyung Moon, Fu‐Shi Quan
    Parasite Immunology.2020;[Epub]     CrossRef
  • Previous Infection with Plasmodium berghei Confers Resistance to Toxoplasma gondii Infection in Mice
    Dong-Hun Lee, Ki-Back Chu, Hae-Ji Kang, Su-Hwa Lee, Fu-Shi Quan
    The Korean Journal of Parasitology.2019; 57(2): 93.     CrossRef
  • Virus-Like Particles Expressing Toxoplasma gondii Rhoptry Protein 18 Induces Better Protection Than Rhoptry Protein 4 against T. gondii Infection
    Hae-Ji Kang, Su-Hwa Lee, Ki-Back Chu, Dong-Hun Lee, Fu-Shi Quan
    The Korean Journal of Parasitology.2018; 56(5): 429.     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Influenza M1 Virus-Like Particles Consisting of Toxoplasma gondii Rhoptry Protein 4
Korean J Parasitol. 2017;55(2):143-148.   Published online April 30, 2017
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Influenza M1 Virus-Like Particles Consisting of Toxoplasma gondii Rhoptry Protein 4
Korean J Parasitol. 2017;55(2):143-148.   Published online April 30, 2017
Close

Figure

  • 0
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
Influenza M1 Virus-Like Particles Consisting of Toxoplasma gondii Rhoptry Protein 4
Image Image Image Image Image Image Image
Fig. 1 PCR amplification of T. gondii ROP4 (A) and influenza M1 genes (B). T. gondii ROP4 (1,728 bp) gene was RCR-amplified from cDNA synthesized using a Prime Script 1st Strain cDNA Synthesis Kit using total RNA extracted from T. gondii RH. Influenza M1 gene was PCR amplified from total RNA extract from influenza virus (A/PR/8/34). M, DNA marker; TgROP4, T. gondii ROP4; M1, influenza M1.
Fig. 2 Construction of pFastBac vectors. T. gondii ROP4 gene and influenza M1 were cloned into the pFastBac with SphI/KpnI and EcoRI/XhoI enzymes, respectively, resulting in pFastbac plasmids containing T. gondii ROP 4 (A) or M1 (B).
Fig. 3 Production of virus-like particles (VLPs). pFastBac plasmids containing ROP4 or M1 were transfected into Sf9 cells, respectively, and baculoviruses expressing T. gondii ROP4 or influenza M1 were generated. Recombinant baculovirus was coinfected into Sf9 cells, and the VLPs were produced. A, Normal SF9 cells; B, VLP-producing cells.
Fig. 4 Electron microscopy examination. Transmission electronic microscopy was used to characterize M1 VLPs morphologically. Negative staining electron microscopy of influenza M1 VLPs was performed. A, Diagram of the M1 VLPs; B, M1 VLPs containing T. gondii ROP 4 under EM.
Fig. 5 Reactivity of M1 VLPs with T. gondii antibody by western blot. A total of 40, 8, and 1.6 μg of M1 VLPs were loaded per lane. Polyclonal mouse anti-T. gondii (ME49) antibody was used to probe T. gondii ROP4 protein (63kD), and monoclonal anti-M1 antibody was used to probe influenza M1 protein (28kD). Thus, T. gondii ROP4 (TgROP4) and influenza M1 proteins were identified, respectively, by western blot.
Fig. 6 M1 VLPs as a coating antigen reacted with T. gondii antibody. Mice were infected with T. gondii (ME49) and 1 month later, mouse sera were collected. M1 VLPs were coated onto 96-well plates, and collected sera were serially diluted and used as a primary antibody to determine IgG antibody responses using ELISA. Higher levels of IgG antibody responses were detected when M1 VLPs as coating antigens.
Fig. 7 IgG cross-reactivity of M1 VLPs containing T. gondii ROP4 with Plasmodium berghei-infected mouse sera. M1 VLPs containing T. gondii ROP4 were coated onto 96-well pates, and P. berghei-infected mouse sera were used as primary antibodies. Then, IgG cross-reactivity was determined using ELISA. A higher level of IgG cross-reactivity of M1 VLPs with P. berghei-infected sera was detected when M1 VLPs as coating antigens (*P< 0.05).
Influenza M1 Virus-Like Particles Consisting of Toxoplasma gondii Rhoptry Protein 4