Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Page Path

10
results for

"Juri Kim"

Article category

Keywords

Publication year

Authors

Funded articles

"Juri Kim"

Brief Communication

Identification and confirmation of SUMOylation-modified proteins in Giardia trophozoites
Hye Rim Yeo, Mee Young Shin, Juri Kim, Soon-Jung Park
Parasites Hosts Dis 2025;63(3):264-271.
Published online August 20, 2025
DOI: https://doi.org/10.3347/PHD.25023
Posttranslational modification by the small ubiquitin-related modifier (SUMO) is one of the crucial cellular processes in Giardia lamblia, a protozoan pathogen. In this study, 5 candidate SUMO substrate proteins of G. lamblia trophozoites were chosen based on their enrichment through affinity chromatography using a SUMO-interaction motif: never in mitosis A-related kinase (NEK), aminoacyl-histidine dipeptidase (AHD), protein disulfide isomerase 2 (PDI2), alcohol dehydrogenase 3, and ornithine carbamoyltransferase. Transgenic Giardia trophozoites expressing 1 of the 5 candidate SUMO substrate proteins were constructed, and their expression was confirmed by western blot using hemagglutinin-tag. Arginine deiminase (ADI) protein was expressed in Giardia trophozoites as a positive control. Cell extracts were processed for affinity chromatography using SUMO-interaction motif resin. As expected, the SUMOylated form of ADI was detected in the affinity chromatography extracts of ADI-expressing cells. Among the 5 candidate proteins, SUMOylated forms of NEK, AHD, and PDI2 were identified in the affinity chromatography extracts. These results suggest that NEK, AHD, and PDI2 activity is modulated via SUMOylation in Giardia trophozoites.
  • 1,661 View
  • 31 Download

Original Articles

Giardia intraflagellar transport protein 88 is involved in flagella formation video
Hye Rim Yeo, Mee Young Shin, Juri Kim, Soon-Jung Park
Parasites Hosts Dis 2025;63(1):12-24.
Published online February 25, 2025
DOI: https://doi.org/10.3347/PHD.24064
Intraflagellar transport (IFT) particles, a multi-protein apparatus composed of complex A and B, are known to be involved in homeostasis of flagella formation. IFT particles have recently become an interesting topic in Giardia lamblia, which has 4 pairs of flagella. In this experiment, we examined the function of giardial IFT components. When 7 components (IFT121, 140, 20, 46, 52, 81, and 88) of IFT were expressed in Giardia trophozoites as a tagged form with mNeonGreen, all of them were found in both flagella pores and cytoplasmic axonemes. In addition, motor proteins for IFT particles (kinesin-13 and kinesin-2b), were localized to a median body and cytoplasmic flagella, respectively. The CRISPRi-mediated knockdown of IFT88 significantly affected the lengths of all 4 flagella compared to the control cells, Giardia expressing dead Cas9 using control guide RNA. Decreased expression of kinesin-2b also resulted in shortening of flagella, excluding the ventral flagella. Live Giardia cells expressing IFT88-mNeonGreen clearly demonstrated fluorescence in flagella pores and cytoplasmic axonemes. These results on IFT88 and kinesin-2b indicate that IFT complex plays a role in maintenance of G. lamblia flagella.

Citations

Citations to this article as recorded by  Crossref logo
  • Identification and confirmation of SUMOylation-modified proteins in Giardia trophozoites
    Hye Rim Yeo, Mee Young Shin, Juri Kim, Soon-Jung Park
    Parasites, Hosts and Diseases.2025; 63(3): 264.     CrossRef
  • 2,311 View
  • 261 Download
  • 1 Web of Science
  • Crossref
Kinesin-13, a Motor Protein, is Regulated by Polo-like Kinase in Giardia lamblia
Eun-Ah Park, Juri Kim, Mee Young Shin, Soon-Jung Park
Korean J Parasitol 2022;60(3):163-172.
Published online June 30, 2022
DOI: https://doi.org/10.3347/kjp.2022.60.3.163
Kinesin-13 (Kin-13), a depolymerizer of microtubule (MT), has been known to affect the length of Giardia. Giardia Kin-13 (GlKin-13) was localized to axoneme, flagellar tips, and centrosomes, where phosphorylated forms of Giardia polo-like kinase (GlPLK) were distributed. We observed the interaction between GlKin-13 and GlPLK via co-immunoprecipitation using transgenic Giardia cells expressing Myc-tagged GlKin-13, hemagglutinin-tagged GlPLK, and in vitro-synthesized GlKin-13 and GlPLK proteins. In vitro-synthesized GlPLK was demonstrated to auto-phosphorylate and phosphorylate GlKin-13 upon incubation with [γ-32P]ATP. Morpholino-mediated depletion of both GlKin-13 and GlPLK caused an extension of flagella and a decreased volume of median bodies in Giardia trophozoites. Our results suggest that GlPLK plays a pertinent role in formation of flagella and median bodies by modulating MT depolymerizing activity of GlKin-13.

Citations

Citations to this article as recorded by  Crossref logo
  • Giardia intraflagellar transport protein 88 is involved in flagella formation
    Hye Rim Yeo, Mee Young Shin, Juri Kim, Soon-Jung Park
    Parasites, Hosts and Diseases.2025; 63(1): 12.     CrossRef
  • In silico characterisation of a mitotic kinesin-related protein from Leishmania donovani KE16
    Suad Gazi AL Kufi, Amjed Qays Ibrahim Alqaisi, Mohammad Mahmoud Farhan Al- Halbosiy, Ikhlass Ali Hussain AlHilaly
    Asia Pacific Journal of Molecular Biology and Biotechnology.2025; : 62.     CrossRef
  • Optimization of 18 S rRNA metabarcoding for the simultaneous diagnosis of intestinal parasites
    Dongjun Kang, Jun Ho Choi, Myungjun Kim, Sohyeon Yun, Singeun Oh, Myung-hee Yi, Tai-Soon Yong, Young Ah Lee, Myeong Heon Shin, Ju Yeong Kim
    Scientific Reports.2024;[Epub]     CrossRef
  • Functional Differentiation of Cyclins and Cyclin-Dependent Kinases in Giardia lamblia
    Juri Kim, Eun-Ah Park, Mee Young Shin, Soon-Jung Park, Björn F. C. Kafsack
    Microbiology Spectrum.2023;[Epub]     CrossRef
  • Tubulin as a potential molecular target for resveratrol in Giardia lamblia trophozoites, in vitro and in silico approaches
    José Roberto Vargas-Villanueva, Filiberto Gutiérrez-Gutiérrez, Mariana Garza-Ontiveros, Sendar Daniel Nery-Flores, Lizeth Guadalupe Campos-Múzquiz, Dagoberto Vazquez-Obregón, Raul Rodriguez-Herrera, Lissethe Palomo-Ligas
    Acta Tropica.2023; 248: 107026.     CrossRef
  • 5,404 View
  • 187 Download
  • 4 Web of Science
  • Crossref

Brief Communications

Functional Identification of a Nuclear Localization Signal of MYB2 Protein in Giardia lamblia
Juri Kim, Mee Young Shin, Soon-Jung Park
Korean J Parasitol 2020;58(6):675-679.
Published online December 29, 2020
DOI: https://doi.org/10.3347/kjp.2020.58.6.675
MYB2 protein was identified as a transcription factor that showed encystation-induced expression in Giardia lamblia. Although nuclear import is essential for the functioning of a transcription factor, an evident nuclear localization signal (NLS) of G. lamblia MYB2 (GlMYB2) has not been defined. Based on putative GlMYB2 NLSs predicted by 2 programs, a series of plasmids expressing hemagglutinin (HA)-tagged GlMYB2 from the promoter of G. lamblia glutamate dehydrogenase were constructed and transfected into Giardia trophozoites. Immunofluorescence assays using anti-HA antibodies indicated that GlMYB2 amino acid sequence #507?#530 was required for the nuclear localization of GlMYB2, and this sequence was named as NLSGlMYB2. We further verified this finding by demonstrating the nuclear location of a protein obtained by the fusion of NLSGlMYB2 and G. lamblia glyceraldehyde 3-phosphate dehydrogenase, a non-nuclear protein. Our data on GlMYB2 will expand our understanding on NLSs functioning in G. lamblia.

Citations

Citations to this article as recorded by  Crossref logo
  • Mlf mediates proteotoxic response via formation of cellular foci for protein folding and degradation in Giardia
    Martina Vinopalová, Lenka Arbonová, Zoltán Füssy, Vít Dohnálek, Abdul Samad, Tomáš Bílý, Marie Vancová, Pavel Doležal, Carmen Faso
    PLOS Pathogens.2024; 20(10): e1012617.     CrossRef
  • Identification of target genes regulated by encystation-induced transcription factor Myb2 using knockout mutagenesis in Giardia lamblia
    Juri Kim, Eun-Ah Park, Mee Young Shin, Soon-Jung Park
    Parasites & Vectors.2022;[Epub]     CrossRef
  • 4,784 View
  • 81 Download
  • 2 Web of Science
  • Crossref
RNA-sequencing Profiles of Cell Cycle?Related Genes Upregulated during the G2-Phase in Giardia lamblia
Juri Kim, Mee Young Shin, Soon-Jung Park
Korean J Parasitol 2019;57(2):185-189.
Published online April 30, 2019
DOI: https://doi.org/10.3347/kjp.2019.57.2.185
To identify the component(s) involved in cell cycle control in the protozoan Giardia lamblia, cells arrested at the G1/S- or G2-phase by treatment with nocodazole and aphidicolin were prepared from the synchronized cell cultures. RNA-sequencing analysis of the 2 stages of Giardia cell cycle identified several cell cycle genes that were up-regulated at the G2-phase. Transcriptome analysis of cells in 2 distinct cell cycle stages of G. lamblia confirmed previously reported components of cell cycle (PcnA, cyclin B, and CDK) and identified additional cell cycle components (NEKs, Mad2, spindle pole protein, and CDC14A). This result indicates that the cell cycle machinery operates in this protozoan, one of the earliest diverging eukaryotic lineages.

Citations

Citations to this article as recorded by  Crossref logo
  • Identification and confirmation of SUMOylation-modified proteins in Giardia trophozoites
    Hye Rim Yeo, Mee Young Shin, Juri Kim, Soon-Jung Park
    Parasites, Hosts and Diseases.2025; 63(3): 264.     CrossRef
  • Functional Differentiation of Cyclins and Cyclin-Dependent Kinases in Giardia lamblia
    Juri Kim, Eun-Ah Park, Mee Young Shin, Soon-Jung Park, Björn F. C. Kafsack
    Microbiology Spectrum.2023;[Epub]     CrossRef
  • In vitro erythrocyte production using human-induced pluripotent stem cells: determining the best hematopoietic stem cell sources
    Youn Keong Cho, Hyun-Kyung Kim, Soon Sung Kwon, Su-Hee Jeon, June-Won Cheong, Ki Taek Nam, Han-Soo Kim, Sinyoung Kim, Hyun Ok Kim
    Stem Cell Research & Therapy.2023;[Epub]     CrossRef
  • Spliceosomal introns in the diplomonad parasite Giardia duodenalis revisited
    Matthew H. Seabolt, Dawn M. Roellig, Konstantinos T. Konstantinidis
    Microbial Genomics .2023;[Epub]     CrossRef
  • A cell-cycle–dependent GARP-like transcriptional repressor regulates the initiation of differentiation in Giardia lamblia
    Han-Wei Shih, Germain C. M. Alas, Alexander R. Paredez
    Proceedings of the National Academy of Sciences.2022;[Epub]     CrossRef
  • Kinesin-13, a Motor Protein, is Regulated by Polo-like Kinase in Giardia lamblia
    Eun-Ah Park, Juri Kim, Mee Young Shin, Soon-Jung Park
    The Korean Journal of Parasitology.2022; 60(3): 163.     CrossRef
  • Hidden Diversity within Common Protozoan Parasites as Revealed by a Novel Genomotyping Scheme
    Matthew H. Seabolt, Konstantinos T. Konstantinidis, Dawn M. Roellig, Johanna Björkroth
    Applied and Environmental Microbiology.2021;[Epub]     CrossRef
  • A polo-like kinase modulates cytokinesis and flagella biogenesis in Giardia lamblia
    Eun-Ah Park, Juri Kim, Mee Young Shin, Soon-Jung Park
    Parasites & Vectors.2021;[Epub]     CrossRef
  • An update on cell division of Giardia duodenalis trophozoites
    Francisco Alejandro Lagunas-Rangel, Janet Yee, Rosa María Bermúdez-Cruz
    Microbiological Research.2021; 250: 126807.     CrossRef
  • Nicotinamide induces G2 cell cycle arrest in Giardia duodenalis trophozoites and promotes changes in sirtuins transcriptional expression
    Francisco Alejandro Lagunas-Rangel, María Luisa Bazán-Tejeda, Enrique García-Villa, Rosa María Bermúdez-Cruz
    Experimental Parasitology.2020; 209: 107822.     CrossRef
  • 7,265 View
  • 127 Download
  • 10 Web of Science
  • Crossref

Original Articles

Trichomonas vaginalis α-Actinin 2 Modulates Host Immune Responses by Inducing Tolerogenic Dendritic Cells via IL-10 Production from Regulatory T Cells
Hye-Yeon Lee, Juri Kim, Jae-Sook Ryu, Soon-Jung Park
Korean J Parasitol 2017;55(4):375-384.
Published online August 31, 2017
DOI: https://doi.org/10.3347/kjp.2017.55.4.375
Trichomonas vaginalis is a pathogen that triggers severe immune responses in hosts. T. vaginalis α-actinin 2, Tvα-actinin 2, has been used to diagnose trichomoniasis. This study was undertaken to examine the role of Tvα-actinin 2 as an antigenic molecule to induce immune responses from humans. Western blot analysis using anti-Tvα-actinin 2 antibodies indicated its presence in the secreted proteins of T. vaginalis. ELISA was employed to measure cytokine production by vaginal epithelial cells, prostate cells, mouse dendritic cells (DCs), or T cells stimulated with T. vaginalis or Tvα-actinin 2 protein. Both T. vaginalis and rTvα-actinin 2 induced cytokine production from epithelial cell lines, including IL-10. Moreover, CD4+CD25- regulatory T cells (Treg cells) incubated with rTvα-actinin 2-treated DCs produced high levels of IL-10. These data indicate that Tvα-actinin 2 modulates immune responses via IL-10 production by Treg cells.

Citations

Citations to this article as recorded by  Crossref logo
  • Identification and Characterization of α-Actinin 1 of Histomonas meleagridis and Its Potential Vaccine Candidates against Histomonosis
    Dandan Liu, Chen Chen, Qiaoguang Chen, Shuang Wang, Zaifan Li, Jie Rong, Yuming Zhang, Zhaofeng Hou, Jianping Tao, Jinjun Xu
    Animals.2023; 13(14): 2330.     CrossRef
  • Surface‐enhanced Raman scattering of secretory proteins for the cytotoxicity analysis of low‐dose doxorubicin
    Mengmeng Zheng, Siqi Gao, Yamin Lin, Yating Lin, Zufang Huang, Shusen Xie, Yun Yu, Juqiang Lin
    Journal of Raman Spectroscopy.2020; 51(11): 2217.     CrossRef
  • Vasoactive intestinal peptide is required in the maintenance of immune regulatory competency of immune regulatory monocytes
    L Guan, D Yu, G-H Wu, H-J Ning, S-D He, S-S Li, T-Y Hu, G Yang, Z-Q Liu, H-Q Yu, X-Z Sun, Z-G Liu, P-C Yang
    Clinical and Experimental Immunology.2019; 196(2): 276.     CrossRef
  • 8,921 View
  • 175 Download
  • 4 Web of Science
  • Crossref
Identification of a Novel Microtubule-Binding Protein in Giardia lamblia
Juri Kim, Soon-Jung Park
Korean J Parasitol 2016;54(4):461-469.
Published online August 31, 2016
DOI: https://doi.org/10.3347/kjp.2016.54.4.461
Giardia lamblia is a protozoan that causes diarrheal diseases in humans. Cytoskeletal structures of Giardia trophozoites must be finely reorganized during cell division. To identify Giardia proteins which interact with microtubules (MTs), Giardia lysates were incubated with in vitro-polymerized MTs and then precipitated by ultracentifugation. A hypothetical protein (GL50803_8405) was identified in the precipitated fraction with polymerized MTs and was named GlMBP1 (G. lamblia microtubule-binding protein 1). Interaction of GlMBP1 with MTs was confirmed by MT binding assays using recombinant GlMBP1 (rGlMBP1). In vivo expression of GlMBP1 was shown by a real-time PCR and western blot analysis using anti-rGlMBP1 antibodies. Transgenic G. lamblia trophozoites were constructed by integrating a chimeric gene encoding hemagglutinin (HA)-tagged GlMBP1 into a Giardia chromosome. Immunofluorescence assays of this transgenic G. lamblia, using anti-HA antibodies, revealed that GlMBP1 mainly localized at the basal bodies, axonemes, and median bodies of G. lamblia trophozoites. This result indicates that GlMBP1 is a component of the G. lamblia cytoskeleton.

Citations

Citations to this article as recorded by  Crossref logo
  • Giardia intraflagellar transport protein 88 is involved in flagella formation
    Hye Rim Yeo, Mee Young Shin, Juri Kim, Soon-Jung Park
    Parasites, Hosts and Diseases.2025; 63(1): 12.     CrossRef
  • Giardia intestinalis coiled-coil cytolinker protein 259 interacts with actin and tubulin
    Omar Rojas-Gutiérrez, Armando Pérez-Rangel, Araceli Castillo-Romero, José Tapia-Ramírez, Emmanuel Ríos-Castro, Minerva Camacho-Nuez, Silvia Giono-Cerezo, Benjamín Nogueda-Torres, Gloria León-Avila, José Manuel Hernández
    Parasitology Research.2021; 120(3): 1067.     CrossRef
  • 9,621 View
  • 163 Download
  • 3 Web of Science
  • Crossref

Brief Communications

Identification of Antigenic Proteins in Trichomonas vaginalis
Hye-Yeon Lee, Sujin Hyung, Jong Woong Lee, Juri Kim, Myeong Heon Shin, Jae-Sook Ryu, Soon-Jung Park
Korean J Parasitol 2011;49(1):79-83.
Published online March 18, 2011
DOI: https://doi.org/10.3347/kjp.2011.49.1.79

Trichomoniasis is a sexually transmitted disease due to infection with Trichomonas vaginalis, and it can cause serious consequences for women's health. To study the virulence factors of this pathogen, T. vaginalis surface proteins were investigated using polyclonal antibodies specific to the membrane fractions of T. vaginalis. The T. vaginalis expression library was constructed by cloning the cDNA derived from mRNA of T. vaginalis into a phage λ Uni-ZAP XR vector, and then used for immunoscreening with the anti-membrane proteins of T. vaginalis antibodies. The immunoreactive proteins identified included adhesion protein AP65-1, α-actinin, kinesin-associated protein, teneurin, and 2 independent hypothetical proteins. Immunofluorescence assays showed that AP65-1, one of the identified immunogenic clones, is prevalent in the whole body of T. vaginalis. This study led us to identify T. vaginalis proteins which may stimulate immune responses by human cells.

Citations

Citations to this article as recorded by  Crossref logo
  • The Multifaceted Functions of Lactoferrin in Antimicrobial Defense and Inflammation
    Jung Won Kim, Ji Seok Lee, Yu Jung Choi, Chaekyun Kim
    Biomolecules.2025; 15(8): 1174.     CrossRef
  • Exposure of Tritrichomonas foetus to sublethal doses of metronidazole induces a specific proinflammatory response in murine macrophages
    Emanuel Ceballos‐Góngora, Julio César Torres‐Romero, Victor Ermilo Arana‐Argáez, María Elizbeth Alvarez‐Sánchez, Karla Acosta‐Viana, Antonio Euan‐Canto, Leidi Cristal Alvarez‐Sánchez
    Journal of Eukaryotic Microbiology.2024;[Epub]     CrossRef
  • Activation of murine macrophages by membrane proteins from Tritrichomonas foetus grown on iron‐ and calcium‐rich conditions
    Antonio Euan‐Canto, Julio César Torres‐Romero, María Elizbeth Alvarez‐Sánchez, Victor Ermilo Arana‐Argáez, Karla Acosta‐Viana, Emanuel Ceballos‐Góngora, Laura Vázquez‐Carrillo, Leidi Alvarez‐Sánchez
    Parasite Immunology.2024;[Epub]     CrossRef
  • Trichomonas vaginalis adhesion protein 65 (TvAP65) modulates parasite pathogenicity by interacting with host cell proteins
    Zhenchao Zhang, Xiaoxiao Song, Yangyang Deng, Yuhua Li, Fakun Li, Wanxin Sheng, Xiaowei Tian, Zhenke Yang, Xuefang Mei, Shuai Wang
    Acta Tropica.2023; 246: 106996.     CrossRef
  • The molecular characterization and immune protection of adhesion protein 65 (AP65) of Trichomonas vaginalis
    Zhenchao Zhang, Xiaoxiao Song, Zhengbo Zhang, Haoran Li, Yujuan Duan, Hao Zhang, Haoran Lu, Chengyang Luo, Mingyong Wang
    Microbial Pathogenesis.2021; 152: 104750.     CrossRef
  • Trichomonas vaginalis α-Actinin 2 Modulates Host Immune Responses by Inducing Tolerogenic Dendritic Cells via IL-10 Production from Regulatory T Cells
    Hye-Yeon Lee, Juri Kim, Jae-Sook Ryu, Soon-Jung Park
    The Korean Journal of Parasitology.2017; 55(4): 375.     CrossRef
  • TvMP50 is an Immunogenic Metalloproteinase during Male Trichomoniasis
    Laura Itzel Quintas-Granados, José Luis Villalpando, Laura Isabel Vázquez-Carrillo, Rossana Arroyo, Guillermo Mendoza-Hernández, María Elizbeth Álvarez-Sánchez
    Molecular & Cellular Proteomics.2013; 12(7): 1953.     CrossRef
  • Epitopes of the Highly Immunogenic Trichomonas vaginalis α-Actinin Are Serodiagnostic Targets for Both Women and Men
    Calvin J. Neace, J. F. Alderete
    Journal of Clinical Microbiology.2013; 51(8): 2483.     CrossRef
  • 10,767 View
  • 155 Download
  • Crossref
Evaluation of α-Tubulin as an Antigenic and Molecular Probe to Detect Giardia lamblia
Juri Kim, Myeong Heon Shin, Kyoung-Ju Song, Soon-Jung Park
Korean J Parasitol 2009;47(3):287-291.
Published online August 28, 2009
DOI: https://doi.org/10.3347/kjp.2009.47.3.287

The α/β-tubulin heterodimer is the basic subunit of microtubules in eukaryotes. Polyclonal antibodies specific to recombinant α-tubulin of Giardia lamblia were made, and found effective as a probe to specifically detect G. lamblia by immunofluorescence assays. Nucleotide sequences of α-tubulin genes were compared between G. lamblia WB and GS strains, prototypes of assemblage A and assemblage B, respectively. A set of primers was designed and used to amplify a portion of the α-tubulin gene from G. lamblia. PCR-RFLP analysis of this α-tubulin PCR product successfully differentiated G. lamblia into 2 distinct groups, assemblages A and B. The results indicate that α-tubulin can be used as a molecular probe to detect G. lamblia.

Citations

Citations to this article as recorded by  Crossref logo
  • Genetic diversity and molecular diagnosis of Giardia
    Yankai Chang, Junqiang Li, Longxian Zhang
    Infection, Genetics and Evolution.2023; 113: 105482.     CrossRef
  • Tubulin as a potential molecular target for resveratrol in Giardia lamblia trophozoites, in vitro and in silico approaches
    José Roberto Vargas-Villanueva, Filiberto Gutiérrez-Gutiérrez, Mariana Garza-Ontiveros, Sendar Daniel Nery-Flores, Lizeth Guadalupe Campos-Múzquiz, Dagoberto Vazquez-Obregón, Raul Rodriguez-Herrera, Lissethe Palomo-Ligas
    Acta Tropica.2023; 248: 107026.     CrossRef
  • Phosphorylation of Serine 148 in Giardia lamblia End‐binding 1 Protein is Important for Cell Division
    Juri Kim, Hye‐Yeon Lee, Kyu‐Ho Lee, Soon‐Jung Park
    Journal of Eukaryotic Microbiology.2017; 64(4): 464.     CrossRef
  • Host defences against Giardia lamblia
    G. Lopez‐Romero, J. Quintero, H. Astiazarán‐García, C. Velazquez
    Parasite Immunology.2015; 37(8): 394.     CrossRef
  • Characterization of Microtubule-Binding and Dimerization Activity of Giardia lamblia End-Binding 1 Protein
    Juri Kim, Sara Nagami, Kyu-Ho Lee, Soon-Jung Park, Ira J. Blader
    PLoS ONE.2014; 9(5): e97850.     CrossRef
  • Zoonotic potential of Giardia
    Una Ryan, Simone M. Cacciò
    International Journal for Parasitology.2013; 43(12-13): 943.     CrossRef
  • Identification of Antigenic Proteins in Trichomonas vaginalis
    Hye-Yeon Lee, Sujin Hyung, Jong Woong Lee, Juri Kim, Myeong Heon Shin, Jae-Sook Ryu, Soon-Jung Park
    The Korean Journal of Parasitology.2011; 49(1): 79.     CrossRef
  • 8,386 View
  • 115 Download
  • Crossref
Original Article
In vivo determination of the gap2 gene promoter activity in Giardia lamblia
Hye-Won Yang, Juri Kim, Tai-Soon Yong, Soon-Jung Park
Korean J Parasitol 2006;44(1):21-26.
Published online March 20, 2006
DOI: https://doi.org/10.3347/kjp.2006.44.1.21

A shuttle vector for Escherichia coli and Giardia lamblia was modified to produce a reporter plasmid, which monitors the expression of prescribed gene in G. lamblia by measuring its luciferase activity. Promoter regions of the gap2 gene, one of the genes induced during encystation, were cloned into this plasmid, and the resultant constructs were then transfected into trophozoites of G. lamblia. Transgenic trophozoites containing one of the 3 gap2-luc reporters were induced to encystation, and characterized with respect to gap2 gene expression by measuring their luciferase activities. Giardia containing a gap2-luc fusion of 112-bp upstream region showed full induction of luciferase activity during encystation.

Citations

Citations to this article as recorded by  Crossref logo
  • Eukaryote-conserved histone post-translational modification landscape in Giardia duodenalis revealed by mass spectrometry
    Samantha J. Emery-Corbin, Joshua J. Hamey, Balu Balan, Laura Rojas-López, Staffan G. Svärd, Aaron R. Jex
    International Journal for Parasitology.2021; 51(4): 225.     CrossRef
  • Trans-spliced Heat Shock Protein 90 Modulates Encystation in Giardia lamblia
    Rishi Kumar Nageshan, Nainita Roy, Shatakshi Ranade, Utpal Tatu, Rhoel Ramos Dinglasan
    PLoS Neglected Tropical Diseases.2014; 8(5): e2829.     CrossRef
  • 8,239 View
  • 89 Download
  • Crossref