Skip to main navigation Skip to main content
  • KSPTM
  • E-Submission

PHD : Parasites, Hosts and Diseases

OPEN ACCESS
ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS

Articles

Original Article

Molecular and biochemical characterization of a novel actin bundling protein in Acanthamoeba

The Korean Journal of Parasitology 2006;44(4):331-341.
Published online: December 20, 2006

Department of Parasitology, Kyungpook National University School of Medicine, Daegu 700-422, Korea.

Corresponding author (hhkong@mail.knu.ac.kr)
• Received: October 4, 2006   • Accepted: November 10, 2006

Copyright © 2006 by The Korean Society for Parasitology

  • 9,881 Views
  • 57 Download
  • 3 Crossref
  • 5 Scopus
prev next

Citations

Citations to this article as recorded by  Crossref logo
  • GILT in tumor cells improves T cell-mediated anti-tumor immune surveillance
    Hongshuai Li, Yuan Wang, Mengchu Ma, Lihong Hu, Xinxin Zhang, Lingbiao Xin, Wei Zhang, Xiaoming Sun, Yuanyuan Ren, Xinting Wang, Jie Yang
    Immunology Letters.2021; 234: 1.     CrossRef
  • Acanthamoeba castellanii cysts: new ultrastructural findings
    Bibiana Chávez-Munguía, Lizbeth Salazar-Villatoro, Anel Lagunes-Guillén, Maritza Omaña-Molina, Martha Espinosa-Cantellano, Adolfo Martínez-Palomo
    Parasitology Research.2013; 112(3): 1125.     CrossRef
  • In Vitro Efficacies of Clinically Available Drugs against Growth and Viability of an Acanthamoeba castellanii Keratitis Isolate Belonging to the T4 Genotype
    Abdul Mannan Baig, Junaid Iqbal, Naveed Ahmed Khan
    Antimicrobial Agents and Chemotherapy.2013; 57(8): 3561.     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Molecular and biochemical characterization of a novel actin bundling protein in Acanthamoeba
Korean J Parasitol. 2006;44(4):331-341.   Published online December 20, 2006
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Molecular and biochemical characterization of a novel actin bundling protein in Acanthamoeba
Korean J Parasitol. 2006;44(4):331-341.   Published online December 20, 2006
Close

Figure

  • 0
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
Molecular and biochemical characterization of a novel actin bundling protein in Acanthamoeba
Image Image Image Image Image Image Image Image Image Image
Fig. 1 A. Schematic representations of the structural regions of AhABP. B. The expression vector of AhABP-F and of its deletion mutants used for transient transfection as EGFP fusion proteins.
Fig. 2 Phylogenetic tree derived by aligning AhABP with other actin bundling proteins in the database. The AhABP gene was found to be 72% and 70% identical with the ABP-46 P. polycephalum and the 34 kDa ABP D. discoideum respectively. Accession numbers are indicated in parenthesis.
Fig. 3 Alignment of AhABP with other actin bundling proteins identified from P. polycephalum and D. discoideum. Two regions of the amino acid sequence homologous to EF-hand calcium binding sites and a segment homologous to actin binding site of Dictyostelium 34 kDa protein are illustrated. The coordinates for Ca2+ ion binding in EF hands are indicated as x, y, z, -y, -x and -z.
Fig. 4 A. Northern blot analysis of the AhABP gene in various Acanthamoeba strains. Lanes: 1, A. healyi OC-3A; 2, A. castellanii Neff and 3, A. castellanii Castellani. A single band of 0.8 kb corresponds to the size of the cDNA indicating that the clone was of full length. B. The expression level 18s rDNA was used as a loading standard.
Fig. 5 Fluorescence micrographs of A. healyi expressing full length AhABP fused with EGFP. Results of transfection into live amoeba cells indicated that AhABP was localized to cell (A) peripheries and (B) pseudopods. Bars: 10 µm.
Fig. 6 Fluorescence micrographs of A. healyi expressing full-length AhABP-EGFP showing that the protein is present in mature phagosomes. White asterisks indicate the positions of yeast cells during phagocytosis. Bar: 10 µm.
Fig. 7 Localization and distribution of EGFP fused AhABP-deletion mutants in transfected cells. Different constructs, i.e., (A) AhABP ΔEF, (B) AhABP ΔAS, and (C) AhABP ΔCT were generated to investigate the relation between these regions and actin binding. Cells expressing these fragments demonstrated the formation of large aggregates located at cell peripheries. Bars: 10 µm.
Fig. 8 Purified AhABP-GST fusion proteins and constructs. Lanes: M, protein size standard; 1, 58 kDa AhABP-F-GST; 2, 51 kDa AhABP ΔCT-GST; 3, 42 kDa AhABP ΔAS-GST and 4, 40 kDa AhABP ΔEF-GST.
Fig. 9 Co-sedimentation assay of AhABP-F and corresponding deletion mutants, namely, AhABP ΔEF, AhABP ΔAS and AhABP ΔCT. A. Mixtures of actin and AhABP-GST fusion proteins were allowed to polymerize in the presence of 0.2 mM (low conc.) or 5 mM (high conc.) CaCl2 and then centrifuged at 250,000 × g. B. AhABP-F alone and actin alone centrifuged under the same conditions did not sediment in the pellet obtained. Supernatants and pellets were separated and analyzed by SDS-PAGE. Lanes: T, total; P, pellet; S, supernatant.
Fig. 10 Electron micrographs of AhABP-F and corresponding constructs. Mixtures of AhABP and actin in the presence of 5 mM CaCl2 viewed under a transmission electron microscope using negative staining: (A) AhABP-F, (B) AhABP ΔEF, (C) AhABP ΔAS and (D) AhABP ΔCT. AhABP-F showed the formation of thick parallel actin bundles, whereas the 3 constructs with deleted sites formed thinner actin filament. Bars: 0.2 µm.
Molecular and biochemical characterization of a novel actin bundling protein in Acanthamoeba